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@ Further set theory
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@ Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

@ Grading and so on in the moodle. Ask questions in moodle.
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Introduction to mathematical logic: set theory, computable functions, model theory,
Malitz, J. Springer

@ Sets for mathematics, FW. Lawvere, R. Rosebrugh, Cambridge
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Purpose

@ Relations are what the 19 century philosophers crystallized as the “core” of human
thinking. These are basically European inventions.

@ To use this freely without much difficulty, the set theory was invented.

@ In this lecture, we will be more rigorous than in HTP and use axioms to establish
facts.
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Orderded pairs

@ Given two elements a, b, an ordered pair (a, b) is defined as {{a}, {a, b}}.

@ We will now define the Cartesian products A x B of A and B the set of all ordered
pairs and show that it is a set.

First, we need that (a, b) = (x, y) implies that a= x and y = b.
Lemma: (a,b) = {{a}} ifand only if a = b.
Proof: «+ clear

—:{{a},{a,b}} ={{a}}. {a} ={a,b}. be {a}. b= a.
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Proof

@ «: clear
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Proof
@ «: clear

° —:(ab)=(xy)

Thusx=y=a=b.

@ (i) If a= b, then (a, b) is a singleton, and so is (x, y). we obtain x = y. x € {a}.
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Proof

@ «: clear

e —:(a,b)=(x,y).

@ (i) If a= b, then (a, b) is a singleton, and so is (x, y). we obtain x = y. x € {a}.
Thusx=y=a=b.

@ (ii) If a # b, then since both (a, b) and (x, y) contain exactly one singletons, it
follows that a = x. {a, b} = {x,y} also. b € {x,y}. Since b# x, b=y.
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Relations
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@ A function is an element of P(X x Y).
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Functions

@ A function is an element of P(X x Y).

@ The set of functions is {r € P(X x Y)|ris a functionX — Y}.
@ Ormore formally, {r € P(X x Y)|vx € X3ly € Y((x,y) € r)}.
@ Define X¥ = {f: Y — X}. The set of functions. This is a set!
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©0=0,1={0},2={0,{0}}.
@ Let A C X. Then the characteristic function of A is the function y4 : X — 2 such
that xa(x) =0if x € X —Aand xa(x) =1ifx € A
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Characteristic functions

©0=0,1={0},2={0,{0}}.
@ Let A C X. Then the characteristic function of A is the function y4 : X — 2 such
that xa(x) =0if x € X —Aand xa(x) =1ifx € A

@ This gives a function P(X) — 2%. A xa.
@ This is a one-to-one correspondence.

@ Proof: Relation? P(X) x 2X?

o C={(AN|f =xa}.

@ Function?

@ One-to-one ? Onto?
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Functions

o Y= {f: 0 Y}={0}c P(0xY)={0).
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Functions

o YO ={f:0— Y} ={0} C P(0x Y)={0}.
@ 0¥ ={f: Y — 0} =0. f(y) =7 is undefined. No existence.
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Families

@ Let {A;} be a family of subsets of X.
@ A€ P(X), i€ I, where [is a set.

@ Ui A = {x]Fi € I(x € A)}.
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Families

Families

@ Let {A;} be a family of subsets of X.
@ A € P(X), i€ I, where lis a set.

@ Ui A = {x]Fi € I(x € A)}.

® When [/ if finite, [ J;, Al = Ay U---UA
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Cartesian product

@ Let {a, b} be a two element set, i.e., an unordered pair.
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Cartesian product

@ Let {a, b} be a two element set, i.e., an unordered pair.
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Cartesian product

@ Let {a, b} be a two element set, i.e., an unordered pair.

@ The subset Z of (X U )22} defined by {z : {a,b} — XU Y|z(a) € X, z(b) € Y}.
@ The function f : Z — X x Y given by f(z) = (z(a), z(b)) is one-to-one and onto.

) Hie{a,b} Xiwhere X; = Xand X, =Y.

S. Choi (KAIST) Logic and set theory November 20, 2012 12/14
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Families

@ {X;} afamily of sets i € /, where /is a set.

@ [],c, X is defined as the set of functions f : | — J,, X with properties (i) € Xi.
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Families

@ {X;} afamily of sets i € /, where /is a set.
@ [],c, X is defined as the set of functions f : | — J,, X with properties (i) € Xi.
@ Odered triples, quadruples, and ... n-tuples...
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Families

@ {X;} afamily of sets i € /, where /is a set.
@ [],c, X is defined as the set of functions f : | — J,, X with properties (i) € Xi.
@ Odered triples, quadruples, and ... n-tuples...

@ Given a subset J of /, we form a function [;., Xi — [];, Xi given by sending
f: 1 — Ui, Xi to the restriction f|J : J — |J,, Xi where domains and range are
restricted.

ied
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Inverses and composites

@ Covered in HTP.

o F = = DA
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