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Introduction

About this lecture

Further set theory

I Ordered pairs
I Relations
I Functions
I Families
I Inverse and composites

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

http://plato.stanford.edu/contents.html has much resource.

Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

Introduction to mathematical logic: set theory, computable functions, model theory,
Malitz, J. Springer

Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge
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Introduction

Purpose

Relations are what the 19 century philosophers crystallized as the “core” of human
thinking. These are basically European inventions.

To use this freely without much difficulty, the set theory was invented.

In this lecture, we will be more rigorous than in HTP and use axioms to establish
facts.
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Ordered pairs

Orderded pairs

Given two elements a, b, an ordered pair (a, b) is defined as {{a}, {a, b}}.

We will now define the Cartesian products A× B of A and B the set of all ordered
pairs and show that it is a set.

First, we need that (a, b) = (x , y) implies that a = x and y = b.

Lemma: (a, b) = {{a}} if and only if a = b.

Proof: ← clear

→: {{a}, {a, b}} = {{a}}. {a} = {a, b}. b ∈ {a}. b = a.
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Ordered pairs

Proof

←: clear

→: (a, b) = (x , y).

(i) If a = b, then (a, b) is a singleton, and so is (x , y). we obtain x = y . x ∈ {a}.
Thus x = y = a = b.

(ii) If a 6= b, then since both (a, b) and (x , y) contain exactly one singletons, it
follows that a = x . {a, b} = {x , y} also. b ∈ {x , y}. Since b 6= x , b = y .
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Relations

Relations

covered in HTP
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Functions

Functions

A function is an element of P(X × Y ).

The set of functions is {r ∈ P(X × Y )|r is a functionX → Y}.
Or more formally, {r ∈ P(X × Y )|∀x ∈ X∃!y ∈ Y ((x , y) ∈ r)}.
Define X Y = {f : Y → X}. The set of functions. This is a set!
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Functions

Characteristic functions

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}.

Let A ⊂ X . Then the characteristic function of A is the function χA : X → 2 such
that χA(x) = 0 if x ∈ X − A and χA(x) = 1 if x ∈ A.

This gives a function P(X )→ 2X . A 7→ χA.

This is a one-to-one correspondence.

Proof: Relation? P(X )× 2X ?

C = {(A, f )|f = χA}.
Function?

One-to-one ? Onto?
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Functions

Y ∅ = {f : ∅ → Y} = {∅} ⊂ P(∅ × Y ) = {∅}.

∅Y = {f : Y → ∅} = ∅. f (y) =? is undefined. No existence.
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Families

Families

Let {Ai} be a family of subsets of X .

Ai ∈ P(X ), i ∈ I, where I is a set.⋃
i∈I Ai = {x |∃i ∈ I(x ∈ Ai)}.

When I if finite,
⋃

i∈I Ai = Ai1 ∪ · · · ∪ Ain .
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Families

Cartesian product

Let {a, b} be a two element set, i.e., an unordered pair.

The subset Z of (X ∪ Y ){a,b} defined by {z : {a, b} → X ∪ Y |z(a) ∈ X , z(b) ∈ Y}.
The function f : Z → X × Y given by f (z) = (z(a), z(b)) is one-to-one and onto.∏

i∈{a,b} Xi where X1 = X and X2 = Y .
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Families

{Xi} a family of sets i ∈ I, where I is a set.

∏
i∈I Xi is defined as the set of functions f : I →

⋃
i∈I Xi with properties f (i) ∈ Xi .

Odered triples, quadruples, and ... n-tuples...

Given a subset J of I, we form a function
∏

i∈I Xi →
∏

i∈J Xi given by sending
f : I →

⋃
i∈I Xi to the restriction f |J : J →

⋃
i∈J Xi where domains and range are

restricted.
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Odered triples, quadruples, and ... n-tuples...

Given a subset J of I, we form a function
∏

i∈I Xi →
∏

i∈J Xi given by sending
f : I →

⋃
i∈I Xi to the restriction f |J : J →

⋃
i∈J Xi where domains and range are

restricted.
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Inverses and composites

Inverses and composites

Covered in HTP.
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