# Logic and the set theory <br> Lecture 20: The set theory (NS) 

## S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

## About this lecture

- Further set theory


## About this lecture

- Further set theory
- Ordered pairs


## About this lecture

- Further set theory
- Ordered pairs
- Relations


## About this lecture

- Further set theory
- Ordered pairs
- Relations
- Functions


## About this lecture

- Further set theory
- Ordered pairs
- Relations
- Functions
- Families


## About this lecture

- Further set theory
- Ordered pairs
- Relations
- Functions
- Families
- Inverse and composites


## About this lecture

- Further set theory
- Ordered pairs
- Relations
- Functions
- Families
- Inverse and composites
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr


## About this lecture

- Further set theory
- Ordered pairs
- Relations
- Functions
- Families
- Inverse and composites
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.


## Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.


## Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.


## Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))


## Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer


## Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge


## Purpose

- Relations are what the 19 century philosophers crystallized as the "core" of human thinking. These are basically European inventions.


## Purpose

- Relations are what the 19 century philosophers crystallized as the "core" of human thinking. These are basically European inventions.
- To use this freely without much difficulty, the set theory was invented.


## Purpose

- Relations are what the 19 century philosophers crystallized as the "core" of human thinking. These are basically European inventions.
- To use this freely without much difficulty, the set theory was invented.
- In this lecture, we will be more rigorous than in HTP and use axioms to establish facts.


## Orderded pairs

- Given two elements $a, b$, an ordered pair $(a, b)$ is defined as $\{\{a\},\{a, b\}\}$.


## Orderded pairs

- Given two elements $a, b$, an ordered pair $(a, b)$ is defined as $\{\{a\},\{a, b\}\}$.
- We will now define the Cartesian products $A \times B$ of $A$ and $B$ the set of all ordered pairs and show that it is a set.


## Orderded pairs

- Given two elements $a, b$, an ordered pair $(a, b)$ is defined as $\{\{a\},\{a, b\}\}$.
- We will now define the Cartesian products $A \times B$ of $A$ and $B$ the set of all ordered pairs and show that it is a set.
- First, we need that $(a, b)=(x, y)$ implies that $a=x$ and $y=b$.


## Orderded pairs

- Given two elements $a, b$, an ordered pair $(a, b)$ is defined as $\{\{a\},\{a, b\}\}$.
- We will now define the Cartesian products $A \times B$ of $A$ and $B$ the set of all ordered pairs and show that it is a set.
- First, we need that $(a, b)=(x, y)$ implies that $a=x$ and $y=b$.
- Lemma: $(a, b)=\{\{a\}\}$ if and only if $a=b$.


## Orderded pairs

- Given two elements $a, b$, an ordered pair $(a, b)$ is defined as $\{\{a\},\{a, b\}\}$.
- We will now define the Cartesian products $A \times B$ of $A$ and $B$ the set of all ordered pairs and show that it is a set.
- First, we need that $(a, b)=(x, y)$ implies that $a=x$ and $y=b$.
- Lemma: $(a, b)=\{\{a\}\}$ if and only if $a=b$.
- Proof: $\leftarrow$ clear


## Orderded pairs

- Given two elements $a, b$, an ordered pair $(a, b)$ is defined as $\{\{a\},\{a, b\}\}$.
- We will now define the Cartesian products $A \times B$ of $A$ and $B$ the set of all ordered pairs and show that it is a set.
- First, we need that $(a, b)=(x, y)$ implies that $a=x$ and $y=b$.
- Lemma: $(a, b)=\{\{a\}\}$ if and only if $a=b$.
- Proof: $\leftarrow$ clear
- $\rightarrow:\{\{a\},\{a, b\}\}=\{\{a\}\} .\{a\}=\{a, b\} . b \in\{a\} \cdot b=a$.


## Proof

- $\leftarrow$ : clear


## Proof

- $\leftarrow$ : clear
- $\rightarrow:(a, b)=(x, y)$.


## Proof

- $\leftarrow$ : clear
- $\rightarrow:(a, b)=(x, y)$.
- (i) If $a=b$, then $(a, b)$ is a singleton, and so is $(x, y)$. we obtain $x=y . x \in\{a\}$. Thus $x=y=a=b$.


## Proof

- $\leftarrow$ : clear
- $\rightarrow:(a, b)=(x, y)$.
- (i) If $a=b$, then $(a, b)$ is a singleton, and so is $(x, y)$. we obtain $x=y . x \in\{a\}$. Thus $x=y=a=b$.
- (ii) If $a \neq b$, then since both $(a, b)$ and $(x, y)$ contain exactly one singletons, it follows that $a=x .\{a, b\}=\{x, y\}$ also. $b \in\{x, y\}$. Since $b \neq x, b=y$.


## Relations

- covered in HTP


## Functions

- A function is an element of $P(X \times Y)$.


## Functions

- A function is an element of $P(X \times Y)$.
- The set of functions is $\{r \in P(X \times Y) \mid r$ is a function $X \rightarrow Y\}$.


## Functions

- A function is an element of $P(X \times Y)$.
- The set of functions is $\{r \in P(X \times Y) \mid r$ is a function $X \rightarrow Y\}$.
- Or more formally, $\{r \in P(X \times Y) \mid \forall x \in X \exists!y \in Y((x, y) \in r)\}$.


## Functions

- A function is an element of $P(X \times Y)$.
- The set of functions is $\{r \in P(X \times Y) \mid r$ is a function $X \rightarrow Y\}$.
- Or more formally, $\{r \in P(X \times Y) \mid \forall x \in X \exists!y \in Y((x, y) \in r)\}$.
- Define $X^{Y}=\{f: Y \rightarrow X\}$. The set of functions. This is a set!


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^{X}$. $A \mapsto \chi_{A}$.


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^{X}$. $A \mapsto \chi_{A}$.
- This is a one-to-one correspondence.


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^{X}$. $A \mapsto \chi_{A}$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^{X}$ ?


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^{X}$. $A \mapsto \chi_{A}$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^{X}$ ?
- $\mathcal{C}=\left\{(A, f) \mid f=\chi_{A}\right\}$.


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^{X}$. $A \mapsto \chi_{A}$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^{X}$ ?
- $\mathcal{C}=\left\{(A, f) \mid f=\chi_{A}\right\}$.
- Function?


## Characteristic functions

- $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}$.
- Let $A \subset X$. Then the characteristic function of $A$ is the function $\chi_{A}: X \rightarrow 2$ such that $\chi_{A}(x)=0$ if $x \in X-A$ and $\chi_{A}(x)=1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^{X}$. $A \mapsto \chi_{A}$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^{X}$ ?
- $\mathcal{C}=\left\{(A, f) \mid f=\chi_{A}\right\}$.
- Function?
- One-to-one ? Onto?
- $Y^{\emptyset}=\{f: \emptyset \rightarrow Y\}=\{\emptyset\} \subset P(\emptyset \times Y)=\{\emptyset\}$.
- $Y^{\emptyset}=\{f: \emptyset \rightarrow Y\}=\{\emptyset\} \subset P(\emptyset \times Y)=\{\emptyset\}$.
- $\emptyset^{Y}=\{f: Y \rightarrow \emptyset\}=\emptyset . f(y)=$ ? is undefined. No existence.


## Families

- Let $\left\{A_{i}\right\}$ be a family of subsets of $X$.


## Families

- Let $\left\{A_{i}\right\}$ be a family of subsets of $X$.
- $A_{i} \in P(X), i \in I$, where $I$ is a set.


## Families

- Let $\left\{A_{i}\right\}$ be a family of subsets of $X$.
- $A_{i} \in P(X), i \in I$, where $I$ is a set.
- $\bigcup_{i \in I} A_{i}=\left\{x \mid \exists i \in I\left(x \in A_{i}\right)\right\}$.


## Families

- Let $\left\{A_{i}\right\}$ be a family of subsets of $X$.
- $A_{i} \in P(X), i \in I$, where $l$ is a set.
- $\bigcup_{i \in I} A_{i}=\left\{x \mid \exists i \in I\left(x \in A_{i}\right)\right\}$.
- When $I$ if finite, $\bigcup_{i \in I} A_{i}=A_{i_{1}} \cup \cdots \cup A_{i_{n}}$.


## Cartesian product

- Let $\{a, b\}$ be a two element set, i.e., an unordered pair.


## Cartesian product

- Let $\{a, b\}$ be a two element set, i.e., an unordered pair.
- The subset $Z$ of $(X \cup Y)^{\{a, b\}}$ defined by $\{z:\{a, b\} \rightarrow X \cup Y \mid z(a) \in X, z(b) \in Y\}$.


## Cartesian product

- Let $\{a, b\}$ be a two element set, i.e., an unordered pair.
- The subset $Z$ of $(X \cup Y)^{\{a, b\}}$ defined by $\{z:\{a, b\} \rightarrow X \cup Y \mid z(a) \in X, z(b) \in Y\}$.
- The function $f: Z \rightarrow X \times Y$ given by $f(z)=(z(a), z(b))$ is one-to-one and onto.


## Cartesian product

- Let $\{a, b\}$ be a two element set, i.e., an unordered pair.
- The subset $Z$ of $(X \cup Y)^{\{a, b\}}$ defined by $\{z:\{a, b\} \rightarrow X \cup Y \mid z(a) \in X, z(b) \in Y\}$.
- The function $f: Z \rightarrow X \times Y$ given by $f(z)=(z(a), z(b))$ is one-to-one and onto.
- $\prod_{i \in\{a, b\}} X_{i}$ where $X_{1}=X$ and $X_{2}=Y$.
- $\left\{X_{i}\right\}$ a family of sets $i \in I$, where $/$ is a set.
- $\left\{X_{i}\right\}$ a family of sets $i \in I$, where $/$ is a set.
- $\prod_{i \in I} X_{i}$ is defined as the set of functions $f: I \rightarrow \bigcup_{i \in I} X_{i}$ with properties $f(i) \in X_{i}$.
- $\left\{X_{i}\right\}$ a family of sets $i \in I$, where $/$ is a set.
- $\prod_{i \in I} X_{i}$ is defined as the set of functions $f: I \rightarrow \bigcup_{i \in I} X_{i}$ with properties $f(i) \in X_{i}$.
- Odered triples, quadruples, and ... $n$-tuples...
- $\left\{X_{i}\right\}$ a family of sets $i \in I$, where $/$ is a set.
- $\prod_{i \in I} X_{i}$ is defined as the set of functions $f: I \rightarrow \bigcup_{i \in I} X_{i}$ with properties $f(i) \in X_{i}$.
- Odered triples, quadruples, and ... $n$-tuples...
- Given a subset $J$ of $I$, we form a function $\prod_{i \in I} X_{i} \rightarrow \prod_{i \in J} X_{i}$ given by sending $f: I \rightarrow \bigcup_{i \in I} X_{i}$ to the restriction $f \mid J: J \rightarrow \bigcup_{i \in J} X_{i}$ where domains and range are restricted.


## Inverses and composites

- Covered in HTP.

