Logic and the set theory Lecture 20: The set theory (NS)

S. Choi

Department of Mathematical Science KAIST, Daejeon, South Korea

Fall semester, 2012

• Further set theory

- Further set theory
 - Ordered pairs

- Further set theory
 - Ordered pairs
 - Relations

- Further set theory
 - Ordered pairs
 - Relations
 - Functions

- Further set theory
 - Ordered pairs
 - Relations
 - Functions
 - Families

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Further set theory
 - Ordered pairs
 - Relations
 - Functions
 - Families
 - Inverse and composites

- Further set theory
 - Ordered pairs
 - Relations
 - Functions
 - Families
 - Inverse and composites
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

• • • • • • •

Image: A matrix

- Further set theory
 - Ordered pairs
 - Relations
 - Functions
 - Families
 - Inverse and composites
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

• • • • • • • •

• Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Image: A matrix

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

Image: Image:

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer

・ロト ・同ト ・ヨト ・ヨ

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge

Purpose

• Relations are what the 19 century philosophers crystallized as the "core" of human thinking. These are basically European inventions.

Purpose

- Relations are what the 19 century philosophers crystallized as the "core" of human thinking. These are basically European inventions.
- To use this freely without much difficulty, the set theory was invented.

Purpose

- Relations are what the 19 century philosophers crystallized as the "core" of human thinking. These are basically European inventions.
- To use this freely without much difficulty, the set theory was invented.
- In this lecture, we will be more rigorous than in HTP and use axioms to establish facts.

• Given two elements *a*, *b*, an ordered pair (*a*, *b*) is defined as {{*a*}, {*a*, *b*}}.

-

<ロト <回ト < 回ト

- Given two elements *a*, *b*, an ordered pair (*a*, *b*) is defined as {{*a*}, {*a*, *b*}}.
- We will now define the Cartesian products *A* × *B* of *A* and *B* the set of all ordered pairs and show that it is a set.

Image: A matched black

- Given two elements *a*, *b*, an *ordered pair* (*a*, *b*) is defined as {{*a*}, {*a*, *b*}}.
- We will now define the Cartesian products *A* × *B* of *A* and *B* the set of all ordered pairs and show that it is a set.
- First, we need that (a, b) = (x, y) implies that a = x and y = b.

(日)

- Given two elements *a*, *b*, an *ordered pair* (*a*, *b*) is defined as {{*a*}, {*a*, *b*}}.
- We will now define the Cartesian products *A* × *B* of *A* and *B* the set of all ordered pairs and show that it is a set.
- First, we need that (a, b) = (x, y) implies that a = x and y = b.
- Lemma: $(a, b) = \{\{a\}\}$ if and only if a = b.

- Given two elements *a*, *b*, an *ordered pair* (*a*, *b*) is defined as {{*a*}, {*a*, *b*}}.
- We will now define the Cartesian products *A* × *B* of *A* and *B* the set of all ordered pairs and show that it is a set.
- First, we need that (a, b) = (x, y) implies that a = x and y = b.
- Lemma: $(a, b) = \{\{a\}\}$ if and only if a = b.
- Proof: \leftarrow clear

- Given two elements *a*, *b*, an ordered pair (*a*, *b*) is defined as {{*a*}, {*a*, *b*}}.
- We will now define the Cartesian products *A* × *B* of *A* and *B* the set of all ordered pairs and show that it is a set.
- First, we need that (a, b) = (x, y) implies that a = x and y = b.
- Lemma: $(a, b) = \{\{a\}\}$ if and only if a = b.
- Proof: \leftarrow clear
- \rightarrow : {{a}, {a, b}} = {{a}}. {a} = {a, b}. b \in {a}. b = a.

• \leftarrow : clear

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

- $\bullet \leftarrow$: clear
- \rightarrow : (a, b) = (x, y).

・ロト ・回ト ・ヨト ・ヨト

- \leftarrow : clear
- \rightarrow : (a, b) = (x, y).
- (i) If a = b, then (a, b) is a singleton, and so is (x, y). we obtain x = y. $x \in \{a\}$. Thus x = y = a = b.

(I) < ((i) <

- \leftarrow : clear
- \rightarrow : (a, b) = (x, y).
- (i) If a = b, then (a, b) is a singleton, and so is (x, y). we obtain x = y. $x \in \{a\}$. Thus x = y = a = b.
- (ii) If $a \neq b$, then since both (a, b) and (x, y) contain exactly one singletons, it follows that a = x. $\{a, b\} = \{x, y\}$ also. $b \in \{x, y\}$. Since $b \neq x$, b = y.

Relations

Relations

• covered in HTP

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• A function is an element of $P(X \times Y)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- A function is an element of $P(X \times Y)$.
- The set of functions is $\{r \in P(X \times Y) | r \text{ is a function} X \to Y\}$.

Functions

- A function is an element of $P(X \times Y)$.
- The set of functions is $\{r \in P(X \times Y) | r \text{ is a function} X \to Y\}$.
- Or more formally, $\{r \in P(X \times Y) | \forall x \in X \exists ! y \in Y((x, y) \in r)\}$.

Functions

- A function is an element of $P(X \times Y)$.
- The set of functions is $\{r \in P(X \times Y) | r \text{ is a function} X \to Y\}$.
- Or more formally, $\{r \in P(X \times Y) | \forall x \in X \exists ! y \in Y((x, y) \in r)\}.$
- Define $X^{Y} = \{f : Y \to X\}$. The set of functions. This is a set!

Characteristic functions

•
$$0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$$

Characteristic functions

- $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$
- Let $A \subset X$. Then the *characteristic function* of A is the function $\chi_A : X \to 2$ such that $\chi_A(x) = 0$ if $x \in X A$ and $\chi_A(x) = 1$ if $x \in A$.

(I) < ((i) <

Characteristic functions

- $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$
- Let A ⊂ X. Then the *characteristic function* of A is the function χ_A : X → 2 such that χ_A(x) = 0 if x ∈ X − A and χ_A(x) = 1 if x ∈ A.
- This gives a function $P(X) \rightarrow 2^X$. $A \mapsto \chi_A$.

Characteristic functions

- $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$
- Let A ⊂ X. Then the *characteristic function* of A is the function χ_A : X → 2 such that χ_A(x) = 0 if x ∈ X − A and χ_A(x) = 1 if x ∈ A.
- This gives a function $P(X) \rightarrow 2^X$. $A \mapsto \chi_A$.
- This is a one-to-one correspondence.

Characteristic functions

- $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$
- Let $A \subset X$. Then the *characteristic function* of A is the function $\chi_A : X \to 2$ such that $\chi_A(x) = 0$ if $x \in X A$ and $\chi_A(x) = 1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^X$. $A \mapsto \chi_A$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^X$?

Characteristic functions

- $0 = \emptyset$, $1 = \{\emptyset\}$, $2 = \{\emptyset, \{\emptyset\}\}$.
- Let $A \subset X$. Then the *characteristic function* of A is the function $\chi_A : X \to 2$ such that $\chi_A(x) = 0$ if $x \in X A$ and $\chi_A(x) = 1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^X$. $A \mapsto \chi_A$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^X$?
- $C = \{(A, f) | f = \chi_A\}.$

Characteristic functions

- $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$
- Let $A \subset X$. Then the *characteristic function* of A is the function $\chi_A : X \to 2$ such that $\chi_A(x) = 0$ if $x \in X A$ and $\chi_A(x) = 1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^X$. $A \mapsto \chi_A$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^X$?
- $\mathcal{C} = \{(A, f) | f = \chi_A\}.$
- Function?

Characteristic functions

- $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}.$
- Let $A \subset X$. Then the *characteristic function* of A is the function $\chi_A : X \to 2$ such that $\chi_A(x) = 0$ if $x \in X A$ and $\chi_A(x) = 1$ if $x \in A$.
- This gives a function $P(X) \rightarrow 2^X$. $A \mapsto \chi_A$.
- This is a one-to-one correspondence.
- Proof: Relation? $P(X) \times 2^X$?
- $\mathcal{C} = \{ (\mathbf{A}, f) | f = \chi_{\mathbf{A}} \}.$
- Function?
- One-to-one ? Onto?

•
$$Y^{\emptyset} = \{f : \emptyset \to Y\} = \{\emptyset\} \subset P(\emptyset \times Y) = \{\emptyset\}.$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

•
$$Y^{\emptyset} = \{f : \emptyset \to Y\} = \{\emptyset\} \subset P(\emptyset \times Y) = \{\emptyset\}.$$

• $\emptyset^{Y} = \{f : Y \to \emptyset\} = \emptyset$. $f(y) = ?$ is undefined. No existence.

・ロト・日本・日本・日本・日本・日本

• Let $\{A_i\}$ be a family of subsets of X.

- Let $\{A_i\}$ be a family of subsets of X.
- $A_i \in P(X)$, $i \in I$, where *I* is a set.

Families

- Let $\{A_i\}$ be a family of subsets of X.
- $A_i \in P(X)$, $i \in I$, where *I* is a set.
- $\bigcup_{i\in I} A_i = \{x | \exists i \in I(x \in A_i)\}.$

Families

- Let $\{A_i\}$ be a family of subsets of X.
- $A_i \in P(X)$, $i \in I$, where *I* is a set.
- $\bigcup_{i\in I} A_i = \{x | \exists i \in I(x \in A_i)\}.$
- When *I* if finite, $\bigcup_{i \in I} A_i = A_{i_1} \cup \cdots \cup A_{i_n}$.

・ロト ・日本 ・ヨト ・ヨト

Cartesian product

• Let {*a*, *b*} be a two element set, i.e., an unordered pair.

Cartesian product

- Let {*a*, *b*} be a two element set, i.e., an unordered pair.
- The subset Z of $(X \cup Y)^{\{a,b\}}$ defined by $\{z : \{a,b\} \rightarrow X \cup Y | z(a) \in X, z(b) \in Y\}$.

Cartesian product

- Let {*a*, *b*} be a two element set, i.e., an unordered pair.
- The subset Z of $(X \cup Y)^{\{a,b\}}$ defined by $\{z : \{a,b\} \rightarrow X \cup Y | z(a) \in X, z(b) \in Y\}$.
- The function $f : Z \to X \times Y$ given by f(z) = (z(a), z(b)) is one-to-one and onto.

Cartesian product

- Let {*a*, *b*} be a two element set, i.e., an unordered pair.
- The subset Z of $(X \cup Y)^{\{a,b\}}$ defined by $\{z : \{a,b\} \rightarrow X \cup Y | z(a) \in X, z(b) \in Y\}$.
- The function $f : Z \to X \times Y$ given by f(z) = (z(a), z(b)) is one-to-one and onto.
- $\prod_{i \in \{a,b\}} X_i$ where $X_1 = X$ and $X_2 = Y$.

• $\{X_i\}$ a family of sets $i \in I$, where I is a set.

・ロト ・回ト ・ヨト ・ヨト

- $\{X_i\}$ a family of sets $i \in I$, where I is a set.
- $\prod_{i \in I} X_i$ is defined as the set of functions $f : I \to \bigcup_{i \in I} X_i$ with properties $f(i) \in X_i$.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

- $\{X_i\}$ a family of sets $i \in I$, where I is a set.
- $\prod_{i \in I} X_i$ is defined as the set of functions $f : I \to \bigcup_{i \in I} X_i$ with properties $f(i) \in X_i$.
- Odered triples, quadruples, and ... n-tuples...

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $\{X_i\}$ a family of sets $i \in I$, where *I* is a set.
- $\prod_{i \in I} X_i$ is defined as the set of functions $f : I \to \bigcup_{i \in I} X_i$ with properties $f(i) \in X_i$.
- Odered triples, quadruples, and ... n-tuples...
- Given a subset *J* of *I*, we form a function $\prod_{i \in I} X_i \to \prod_{i \in J} X_i$ given by sending $f : I \to \bigcup_{i \in J} X_i$ to the restriction $f|J : J \to \bigcup_{i \in J} X_i$ where domains and range are restricted.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inverses and composites

Covered in HTP.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・