4.2. Properties of
determinant



Determinant of AT

» For 2x2 matrix det(A)=det(AT).
» In general we have

Theorem 4.2.1 If A is a square matrix, then det(A) = det(AT).

» The simplest way to prove this is to use the
formula.

» The another method is to use the cofactor
expansion along rows for A and that along
columns for AT. See p 190-191.




Effect of elementary operations
on a determinant.
» The following will be important in computing:

Theorem 4.2.2 Let A be an n X n matrix.

(a) If B is the matrix that results when a single row or single column of A is multiplied
by a scalar k, then det(B) = k det(A).

(b) If B is the matrix that results when two rows or two columns of A are interchanged,
then det(B) = — det(A).

(¢) If B is the matrix that results when a multiple of one row of A is added to another

row or when a multiple of one column is added to another column, then
det(B) = det(A).




Proof (a):

det(A)=a i1C _i1+a i2C _i2+...+a_inC _in.
If we multiply the ith-row by k, then each term in det(A)
get multiplied by k.

Proof (b): We can use formula.

Suppose we exchanged two columns. Then in each
elementary products in det(B).

We can make a one-to-one correspondence between
elementary products in det(A) to those of det(B) by
identifying the same term up to signs.

The sign in each term of B should be reversed from the
corresponding one in A.

To see in case we exchange two rows, we use A'.




» Proof (c): Add i-th row to j-th row. Cofactor expand
det(A) along the j-th row. Then we have

det(A') = (a; + ka, )Ci +(a,+ ka., )Cipt+ .t (a, + ka, )<,
=det(A) + kdet(A"")

- Here A” is a matrix obtained by replacing the j-th row of
A by the i-th row of A.

- By Theorem 4.2.3 (a), det(A”)=0.
> For column case, we use AT.

» See Example 1.




Theorem 4.2.3 Let A be an n x n matrix.
(a) If A has two identical rows or columns, then det(A) = 0.

(b) If A has two proportional rows or columns, then det(A) = 0.
(¢) det(kA) = k" det(A).

Proof (a): If A has two same rows, then after the
exchange of the two rows, we still get A.

By Theorem 4.2.2 (b), det(A)=-det(A). Thus
det(A)=0.

Proof (b): If A has two proportional rows, then one
row is a multiple of the other row, say by k. If we
multiply the other row by 1/k, then the result has
determinant 0. Thus det(A)=0 by Theorem 4.2.2
(a).

Proof (c): omit.




Simplifying cofactor
expansion

» Given a matrix, we do row and column operations
of type Theorem 4.2.2 (c) to make many zeros.

» Example 4.




Determinats by Gaussian

eliminations

» We can use Gaussian elimination to evaluate a
determinant.

» Each multiplication by k of a row should be
compensated by multiplying by1/k to the result.

» Each row exchange should be compensated by
the multiplication by -1.

» For type (c), we do not need any compensations.
» See Example *.




Theorem 4.2.4 A square matrix A is invertible if and only if det(A) # 0.

First we need. R ref of A. Then

det(R)=0 iff det(A)=0. This follows since each
elementary operation preserves det being O or
nonzero.

Proof: ->) If A is invertible, then ref of Ais |. Thus,
det(A) is nonzero.

<-) If det(A) is not zero, then det(R) is not zero for
the ref R of A. Thus R has no zero rows. Hence R
Is |. If ref of Alis I, then A is invertible by Theorem
3.3.3.




Theorem 4.2.5 If A and B are square matrices of the same size, then

det(AB) = det(A) det(B) (1)

» Proof: We need:

Lemma 4.2.8 Let E be an n x n elementary matrix and I,, the n x n identity matrix.
(a) If E results by multiplying a row of I, by k, then det(E) = k.
(b) If E results by interchanging two rows of 1,,, then det(E) = —1.
(¢) If E results by adding a multiple of one row of I,, to another, then det(E) = 1.

Lemma 4.2.9 If B isann x n matrix and E is an n X n elementary matrix, then

det(EB) = det(E) det(B)




Proof of 4.2.8: Just computations

Proof of 4.2.9. EB is just a result of row operation.
det(EB) is just some number times det(B).
The number is det(E).

Proof of 4.2.5: If A is singular (i.e. not invertible), then
AB is singular (not invertible) also. By Theorem 4.2.4
both have determinant O and we are done.

If A is invertible, then A=E_1E_2...E_ k.
det(AB)=det(E_1E_2...E_kB)=det(E_1)det(E_2...E_kB) =
det(E_1)det(E_2)...det(E_k)det(B).
det(A)=det(E_1)det(E_2)...det(E_K).

Thus the conclusion holds.




Computing determinants by LU-

decompositions
» A=LU. det(A)=det(L)det(U).
» We just need to multiply the diagonals.

» Obtaining LU decompostions is around 2n3/3
which is much smaller than n!.




Determinant of an inverse matrix

» Theorem 4.2.6. det(A-1)= 1/det(A).
» Proof: AA-'=I. det(A)det(A-")=det(l)=1.
» Deteminant of A+B.

> It is not true that det(A+B)=det(A)+det(B).

- However, there are other invariants that we haven't
learned that we can compensate the difference.




A unifying theorem

Theorem 4.2.7 If A is an n x n matrix, then the following statements are equivalent.
(a) The reduced row echelon form of A is I,.
(b) A is expressible as a product of elementary matrices.
(c) A isinvertible.
(d) Ax = 0 has only the trivial solution.
(e) Ax = b is consistent for every vector b in R".
(f) Ax = b has exactly one solution for every vector b in R".

(g) The column vectors of A are linearly independent.

(h) The row vectors of A are linearly independent.
(i) det(A) £#0O.




Ex set 4.2.

» 1-10 Theory practise
» 11-18 Gaussian elimination
» 19-28 Theory




