


 For 2x2 matrix det(A)=det(AT).
 In general we have

 The simplest way to prove this is to use the
formula.

 The another method is to use the cofactor
expansion along rows for A and that along
columns for AT. See p 190-191.



 The following will be important in computing:



 Proof (a):
det(A)=a_i1C_i1+a_i2C_i2+…+a_inC_in.
◦ If we multiply the ith-row by k, then each term in det(A)

get multiplied by k.
 Proof (b): We can use formula.
◦ Suppose we exchanged two columns. Then in each

elementary products in det(B).
◦ We can make a one-to-one correspondence between

elementary products in det(A) to those of det(B) by
identifying the same term up to signs.
◦ The sign in each term of B should be reversed from the

corresponding one in A.
◦ To see in case we exchange two rows, we use AT.



 Proof (c): Add i-th row to j-th row. Cofactor expand
det(A) along the j-th row. Then we have

◦ Here A’’ is a matrix obtained by replacing the j-th row of
A by the i-th row of A.
◦ By Theorem 4.2.3 (a), det(A’’)=0.
◦ For column case, we use AT.

 See Example 1.

! 

det(A') = (a j1 + kai1 )C j1 + (a j2 + kai2 )C j 2 + ...+ (a jn + kain )C jn

= det(A) + kdet(A' ')



 Proof (a): If A has two same rows, then after the
exchange of the two rows, we still get A.
By Theorem 4.2.2 (b), det(A)=-det(A). Thus
det(A)=0.

 Proof (b): If A has two proportional rows, then one
row is a multiple of the other row, say by k. If we
multiply the other row by 1/k, then the result has
determinant 0. Thus det(A)=0 by Theorem 4.2.2
(a).

 Proof (c): omit.



 Given a matrix, we do row and column operations
of type Theorem 4.2.2 (c) to make many zeros.

 Example 4.



 We can use Gaussian elimination to evaluate a
determinant.

 Each multiplication by k of a row should be
compensated by multiplying by1/k to the result.

 Each row exchange should be compensated by
the multiplication by -1.

 For type (c), we do not need any compensations.
 See Example *.



 First we need. R ref of A. Then
det(R)=0 iff det(A)=0. This follows since each
elementary operation preserves det being 0 or
nonzero.

 Proof: ->) If A is invertible, then ref of A is I. Thus,
det(A) is nonzero.

 <-) If det(A) is not zero, then det(R) is not zero for
the ref R of A. Thus R has no zero rows. Hence R
is I. If ref of A is I, then A is invertible by Theorem
3.3.3.



 Proof: We need:



 Proof of 4.2.8: Just computations
 Proof of 4.2.9. EB is just a result of row operation.

det(EB) is just some number times det(B).
The number is det(E).

 Proof of 4.2.5: If A is singular (i.e. not invertible), then
AB is singular (not invertible) also. By Theorem 4.2.4
both have determinant 0 and we are done.

 If A is invertible, then A=E_1E_2…E_k.
◦ det(AB)=det(E_1E_2…E_kB)= det(E_1)det(E_2…E_kB) =

det(E_1)det(E_2)…det(E_k)det(B).
◦ det(A)=det(E_1)det(E_2)…det(E_k).
◦ Thus the conclusion holds.



 A=LU. det(A)=det(L)det(U).
 We just need to multiply the diagonals.
 Obtaining LU decompostions is around 2n3/3

which is much smaller than n!.



 Theorem 4.2.6. det(A-1)= 1/det(A).
 Proof: AA-1=I. det(A)det(A-1)=det(I)=1.
 Deteminant of A+B.
◦ It is not true that det(A+B)=det(A)+det(B).
◦ However, there are other invariants that we haven’t

learned that we can compensate the difference.
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