4.2. Properties of determinant

Determinant of A^{\top}

- For 2×2 matrix $\operatorname{det}(A)=\operatorname{det}\left(\mathrm{A}^{\top}\right)$.
- In general we have

Theorem 4.2.1 If A is a square matrix, then $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.

- The simplest way to prove this is to use the formula.
- The another method is to use the cofactor expansion along rows for A and that along columns for A^{\top}. See p 190-191.

Effect of elementary operations on a determinant.

- The following will be important in computing:

Theorem 4.2.2 Let A be an $n \times n$ matrix.
(a) If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
(b) If B is the matrix that results when two rows or two columns of A are interchanged, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
(c) If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of one column is added to another column, then $\operatorname{det}(B)=\operatorname{det}(A)$.

- Proof (a): $\operatorname{det}(A)=a _i 1 C _i 1+a _i 2 C _i 2+\ldots+a _i n C _i n$.
- If we multiply the ith-row by k, then each term in $\operatorname{det}(A)$ get multiplied by k.
- Proof (b): We can use formula.
- Suppose we exchanged two columns. Then in each elementary products in $\operatorname{det}(\mathrm{B})$.
- We can make a one-to-one correspondence between elementary products in $\operatorname{det}(A)$ to those of $\operatorname{det}(B)$ by identifying the same term up to signs.
The sign in each term of B should be reversed from the corresponding one in A .
To see in case we exchange two rows, we use A^{\top}.
- Proof (c): Add i-th row to j-th row. Cofactor expand $\operatorname{det}(A)$ along the j-th row. Then we have

$$
\begin{aligned}
& \operatorname{det}\left(A^{\prime}\right)=\left(a_{j 1}+k a_{i 1}\right) C_{j 1}+\left(a_{j 2}+k a_{i 2}\right) C_{j 2}+\ldots+\left(a_{j n}+k a_{i n}\right) C_{j n} \\
& =\operatorname{det}(A)+k \operatorname{det}\left(A^{\prime}\right)
\end{aligned}
$$

- Here A" is a matrix obtained by replacing the j-th row of A by the i-th row of A.
- By Theorem 4.2.3 (a), $\operatorname{det}\left(\mathrm{A}^{\prime \prime}\right)=0$.
- For column case, we use A^{\top}.
, See Example 1.

Theorem 4.2.3 Let A be an $n \times n$ matrix.
(a) If A has two identical rows or columns, then $\operatorname{det}(A)=0$.
(b) If A has two proportional rows or columns, then $\operatorname{det}(A)=0$.
(c) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.

- Proof (a): If A has two same rows, then after the exchange of the two rows, we still get A. By Theorem 4.2.2 (b), det $(A)=-\operatorname{det}(A)$. Thus $\operatorname{det}(A)=0$.
- Proof (b): If A has two proportional rows, then one row is a multiple of the other row, say by k. If we multiply the other row by $1 / k$, then the result has determinant 0 . Thus $\operatorname{det}(A)=0$ by Theorem 4.2.2 (a).
- Proof (c): omit.

Simplifying cofactor expansion

- Given a matrix, we do row and column operations of type Theorem 4.2.2 (c) to make many zeros.
- Example 4.

Determinats by Gaussian eliminations

- We can use Gaussian elimination to evaluate a determinant.
- Each multiplication by k of a row should be compensated by multiplying by1/k to the result.
, Each row exchange should be compensated by the multiplication by -1 .
- For type (c), we do not need any compensations.
- See Example *.
- First we need. R ref of A. Then $\operatorname{det}(\mathrm{R})=0$ iff $\operatorname{det}(\mathrm{A})=0$. This follows since each elementary operation preserves det being 0 or nonzero.
- Proof: ->) If A is invertible, then ref of A is I. Thus, $\operatorname{det}(A)$ is nonzero.
, <-) If $\operatorname{det}(A)$ is not zero, then $\operatorname{det}(R)$ is not zero for the $\operatorname{ref} R$ of A. Thus R has no zero rows. Hence R is I. If ref of A is I, then A is invertible by Theorem 3.3.3.

Theorem 4.2.5 If A and B are square matrices of the same size, then

$$
\begin{equation*}
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \tag{1}
\end{equation*}
$$

- Proof: We need:

Lemma 4.2.8 Let E be an $n \times n$ elementary matrix and I_{n} the $n \times n$ identity matrix.
(a) If E results by multiplying a row of I_{n} by k, then $\operatorname{det}(E)=k$.
(b) If E results by interchanging two rows of I_{n}, then $\operatorname{det}(E)=-1$.
(c) If E results by adding a multiple of one row of I_{n} to another, then $\operatorname{det}(E)=1$.

Lemma 4.2.9 If B is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then

$$
\operatorname{det}(E B)=\operatorname{det}(E) \operatorname{det}(B)
$$

- Proof of 4.2.8: Just computations
- Proof of 4.2.9. EB is just a result of row operation. $\operatorname{det}(E B)$ is just some number times $\operatorname{det}(B)$. The number is $\operatorname{det}(E)$.
- Proof of 4.2.5: If A is singular (i.e. not invertible), then AB is singular (not invertible) also. By Theorem 4.2.4 both have determinant 0 and we are done.
- If A is invertible, then $A=E _1 E _2 . . . E _k$. $\operatorname{det}(A B)=\operatorname{det}\left(E _1 E _2 \ldots E _k B\right)=\operatorname{det}\left(E_{-} 1\right) \operatorname{det}\left(E _2 \ldots E _k B\right)=$ $\operatorname{det}\left(E_{-} 1\right) \operatorname{det}\left(E_{_} 2\right) . . . \operatorname{det}\left(E_{-} k\right) \operatorname{det}(B)$. $\operatorname{det}(A)=\operatorname{det}\left(E _1\right) \operatorname{det}\left(E _2\right) . . \operatorname{det}\left(E _k\right)$.
Thus the conclusion holds.

Computing determinants by LUdecompositions

- $A=L U . \operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U)$.
- We just need to multiply the diagonals.
- Obtaining LU decompostions is around $2 n^{3} / 3$ which is much smaller than n !.

Determinant of an inverse matrix

- Theorem 4.2.6. $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
- Proof: $A A^{-1}=I . \operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(I)=1$.
- Deteminant of $A+B$.
- It is not true that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
- However, there are other invariants that we haven't learned that we can compensate the difference.

A unifying theorem

Theorem 4.2.7 If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) The reduced row echelon form of A is I_{n}.
(b) A is expressible as a product of elementary matrices.
(c) A is invertible.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b} in R^{n}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every vector \mathbf{b} in R^{n}.
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independent.
(i) $\operatorname{det}(A) \neq 0$.

Ex set 4.2.

- 1-10 Theory practise
- 11-18 Gaussian elimination
- 19-28 Theory

