4.4. A first look at Eigenvalues and eigenvectors

Fixed points

- $A x=x$. (I-A) $x=0$.
- If I-A is invertible, then there are only trivial solutions.
- Thus we have:

Theorem 4.4.1 If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) A has nontrivial fixed points.
(b) $I-A$ is singular.
(c) $\operatorname{det}(I-A)=0$.

- Example 1.

Eigenvalue and Eigenvectors

- $A x=L x$ for a real number L (could be zero)

Definition 4.4.3 If A is an $n \times n$ matrix, then a scalar λ is called an eigenvalue of A if there is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$. If λ is an eigenvalue of A, then every nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvector of A corresponding to λ.

- (LI -A) $x=0$. This has a nontrivial solution if and only if LI-A is singular if and only if $\operatorname{det}(\mathrm{LI}-\mathrm{A})=0$.
- This is called the characteristic equation.

Theorem 4.4.4 If A is an $n \times n$ matrix and λ is a scalar, then the following statements are equivalent.
(a) λ is an eigenvalue of A.
(b) λ is a solution of the equation $\operatorname{det}(\lambda I-A)=0$.
(c) The linear system $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has nontrivial solutions.

- Example 2

Eigenvalues of triangular matrices

- A nxn triangular matrix with diagonal entries a_11,a_22,...,a_nn.
- Then $\operatorname{det}(L I-A)=\left(L-a _11\right)\left(L-a _22\right) . . .\left(L-a _n n\right)$.
- Thus the eigenvalues are a_11, a_22, ..., a_nn.

Theorem 4.4.5 If A is a triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

Theorem 4.4.6 If λ is an eigenvalue of a matrix A and \mathbf{x} is a corresponding eigenvector, and if k is any positive integer, then λ^{k} is an eigenvalue of A^{k} and \mathbf{x} is a corresponding eigenvector.

Theorem 4.4.7 If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) The reduced row echelon form of A is I_{n}.
(b) A is expressible as a product of elementary matrices.
(c) A is invertible.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b} in R^{n}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every vector \mathbf{b} in R^{n}.
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independent.
(i) $\operatorname{det}(A) \neq 0$.
(j) $\lambda=0$ is not an eigenvalue of A.

Complex eigenvalues

- There might be complex roots of characteristic polynomial, with only real coefficients.
- Thus when a complex root appears its complex conjugate appears as a root also.
- Thus eigenvalues appear as real numbers or as complex numbers in conjugate pairs.

Multiplicity of eigenvalues

- When you factor the characteristic polynomial, one of the following happens:

1. Factor completely into distinct real linear factors.
2. Some real linear factors may be repeated.
3. There might be quadratic factors, which may be repeated.

- If we allow complex numbers, then a characteristic polynomial factors completely into linear factors which may be repeated.
- The multiplicity of an eigenvalue $L _i$ is the number of times (L-L_i) appears in the factorization.

Theorem 4.4.8 If A is an $n \times n$ matrix, then the characteristic polynomial of A can be expressed as

$$
\operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{k}\right)^{m_{k}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of A and $m_{1}+m_{2}+\cdots+m_{k}=n$.

- Example **

Eigenvalue analysis of 2x2matrices

- $A=[(a, b),(c, d)]$.
- $\operatorname{Det}(L I-A)=(L-a)(L-d)-b c=L^{2}-(a+d) L+(a d-b c)$ $=L^{2}-\operatorname{tr}(A) L+\operatorname{det}(\mathrm{L})$.

- Discriminants

Theorem 4.4.9 If A is a 2×2 matrix with real entries, then the characteristic equation of A is

$$
\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=0
$$

and
(a) A has two distinct real eigenvalues if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)>0$;
(b) A has one repeated real eigenvalue if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)=0$;
(c) A has two conjugate imaginary eigenvalues if $\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)<0$.

- In case (a), A has two eigenvectors not parallel to each other.
- In case (b), A may have only one eigenvector. eg. $A=[[2,1],[0,2]]$.
- In case (c), A have two complex eigenvectors not parallel to each other.
- See Example 5.

Eigenvalues of Symmetric 2x2 matrices

When given 2×2 symmetric matrix, we see that $\operatorname{tr}(A)^{2}$ $4 \operatorname{det}(\mathrm{~A})=$
$(a+d)^{2}-4\left(a d-b^{2}\right)=(a-d)^{2}+4 b^{2} \geq 0$.
Thus, A has only real eigenvalues.
If A has a repeated eigenvalue, then $(a-d)=b=0$.
Thus $\mathrm{A}=[[\mathrm{a}, 0],[\mathrm{a}, 0 \mathrm{0}]$.

Theorem 4.4.10 A symmetric 2×2 matrix with real entries has real eigenvalues. Moreover, if A is of the form

$$
A=\left[\begin{array}{ll}
a & 0 \tag{23}\\
0 & a
\end{array}\right]
$$

then A has one repeated eigenvalue, namely $\lambda=a$; otherwise it has two distinct eigenvalues.

Theorem 4.4.11

(a) If a 2×2 symmetric matrix with real entries has one repeated eigenvalue, then the eigenspace corresponding to that eigenvalue is R^{2}.
(b) If a 2×2 symmetric matrix with real entries has two distinct eigenvalues, then the eigenspaces corresponding to those eigenvalues are perpendicular lines through the origin of R^{2}.

- Example 6: (Ex 5(a))

Expressions for determinants and traces in terms of eigenvalues.

Theorem 4.4.12 If A is an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (repeated according to multiplicity), then:
(a) $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$
(b) $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$

- Proof $a) \operatorname{det}(L I-A)=\left(L-L _1\right) \ldots\left(L-L _n\right)$. Let $L=0$. Then $\operatorname{det}(-A)=(-1)^{n} L _1 \ldots L _n$. Since $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$, we have the result.
- Proof b) In $\operatorname{det}(\mathrm{LI}-\mathrm{A})$, the $\mathrm{L}^{\mathrm{n}-1}$ terms come from the diagonal product (L-a_11)(L-a_22)...(L-a_nn): Why?
The coefficent is $-\left(a _11+a _22+\ldots+a _n n\right)=\operatorname{tr}(A)$ In (L-L_1)...(L-L_n), the L^{n-1} term has a coefficient $-\left(L _1+L _2+\ldots+L _n\right)$

Eigenvalues by numerical methods.

- For $n<5$, there is an exact algbraic method since we can solve such polynomials.
- For $n \geq 5$, there are no algebraic method.
- But there are numerical approximations to eigenvalues and eigenvectors.

