4.4. A first look at Eigenvalues and eigenvectors

Fixed points

- Ax=x. (I-A)x=0.
- If I-A is invertible, then there are only trivial solutions.
- Thus we have:

Theorem 4.4.1 If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A has nontrivial fixed points.
- (b) I A is singular.
- (c) $\det(I A) = 0.$
- Example 1.

Eigenvalue and Eigenvectors

Ax = Lx for a real number L (could be zero)

Definition 4.4.3 If A is an $n \times n$ matrix, then a scalar λ is called an *eigenvalue* of A if there is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. If λ is an eigenvalue of A, then every nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ is called an *eigenvector* of A corresponding to λ .

- ► (LI –A)x=0. This has a nontrivial solution if and only if LI-A is singular if and only if det(LI-A)=0.
- This is called the characteristic equation.

Theorem 4.4.4 If A is an $n \times n$ matrix and λ is a scalar, then the following statements are equivalent.

- (a) λ is an eigenvalue of A.
- (b) λ is a solution of the equation $\det(\lambda I A) = 0$.
- (c) The linear system $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.

Example 2

Eigenvalues of triangular matrices

- A nxn triangular matrix with diagonal entries a_11,a_22,...,a_nn.
- ▶ Then det(LI-A)=(L-a_11)(L-a_22)...(L-a_nn).
- ▶ Thus the eigenvalues are a_11, a_22, ..., a_nn.

Theorem 4.4.5 If A is a triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

Theorem 4.4.6 If λ is an eigenvalue of a matrix A and \mathbf{x} is a corresponding eigenvector, and if k is any positive integer, then λ^k is an eigenvalue of A^k and \mathbf{x} is a corresponding eigenvector.

Theorem 4.4.7 If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (g) The column vectors of A are linearly independent.
- (h) The row vectors of A are linearly independent.
- (i) $\det(A) \neq 0$.
- (j) $\lambda = 0$ is not an eigenvalue of A.

Complex eigenvalues

- There might be complex roots of characteristic polynomial, with only real coefficients.
- Thus when a complex root appears its complex conjugate appears as a root also.
- Thus eigenvalues appear as real numbers or as complex numbers in conjugate pairs.

Multiplicity of eigenvalues

- When you factor the characteristic polynomial, one of the following happens:
 - 1. Factor completely into distinct real linear factors.
 - 2. Some real linear factors may be repeated.
 - 3. There might be quadratic factors, which may be repeated.
- If we allow complex numbers, then a characteristic polynomial factors completely into linear factors which may be repeated.
- The multiplicity of an eigenvalue L_i is the number of times (L-L_i) appears in the factorization.

Theorem 4.4.8 If A is an $n \times n$ matrix, then the characteristic polynomial of A can be expressed as

$$\det(\lambda I - A) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k}$$

where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the distinct eigenvalues of A and $m_1 + m_2 + \cdots + m_k = n$.

Example **

Eigenvalue analysis of 2x2matrices

- A=[(a,b),(c,d)].
- Det(LI-A)=(L-a)(L-d)-bc= L^2 -(a+d)L+(ad-bc) = L^2 -tr(A)L+det(L).
- Discriminants

Theorem 4.4.9 If A is a 2×2 matrix with real entries, then the characteristic equation of A is

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A) = 0$$

and

- (a) A has two distinct real eigenvalues if $tr(A)^2 4 det(A) > 0$;
- (b) A has one repeated real eigenvalue if $tr(A)^2 4 det(A) = 0$;
- (c) A has two conjugate imaginary eigenvalues if $tr(A)^2 4 det(A) < 0$.

- In case (a), A has two eigenvectors not parallel to each other.
- In case (b), A may have only one eigenvector. eg. A=[[2,1],[0,2]].
- In case (c), A have two complex eigenvectors not parallel to each other.
- See Example 5.

Eigenvalues of Symmetric 2x2 matrices

When given 2x2 Symmetric matrix, we see that tr(A)2-

4det(A)=

 $(a+d)^2-4(ad-b^2) = (a-d)^2+4b^2 \ge 0.$

Thus, A has only real eigenvalues.

If A has a repeated eigenvalue, then (a-d)=b=0.

Thus A=[[a,0],[a,0]].

Theorem 4.4.10 A symmetric 2×2 matrix with real entries has real eigenvalues. Moreover, if A is of the form

$$A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \tag{23}$$

then A has one repeated eigenvalue, namely $\lambda = a$; otherwise it has two distinct eigenvalues.

Theorem 4.4.11

- (a) If a 2×2 symmetric matrix with real entries has one repeated eigenvalue, then the eigenspace corresponding to that eigenvalue is R^2 .
- (b) If a 2×2 symmetric matrix with real entries has two distinct eigenvalues, then the eigenspaces corresponding to those eigenvalues are perpendicular lines through the origin of R^2 .
- Example 6: (Ex 5(a))

Expressions for determinants and traces in terms of eigenvalues.

Theorem 4.4.12 If A is an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ (repeated according to multiplicity), then:

- (a) $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$
- (b) $tr(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$
- Proof a) det(LI-A)=(L-L_1)...(L-L_n).
 - Let L=0. Then det(-A)=(-1)ⁿL_1...L_n.
 - Since det(-A)=(-1)ⁿdet(A), we have the result.
- Proof b) In det(LI-A), the Lⁿ⁻¹ terms come from the diagonal product (L-a_11)(L-a_22)...(L-a_nn): Why?
 - The coefficent is –(a_11+a_22+...+a_nn)=tr(A)
 - In (L-L_1)...(L-L_n), the Lⁿ⁻¹ term has a coefficient -(L_1+L_2+...+L_n)

Eigenvalues by numerical methods.

- For n < 5, there is an exact algbraic method since we can solve such polynomials.
- For n≥ 5, there are no algebraic method.
- But there are numerical approximations to eigenvalues and eigenvectors.