Chapter 6. Linear transformations

The purpose is to understand linear transformations, see various examples, kernel range, compositions and invertibility

6.1. Matrices as transformations

Definition 6.1.1 Given a set D of allowable inputs, a function f is a rule that associates a unique output with each input from D; the set D is called the domain of f. If the input is denoted by x, then the corresponding output is denoted by $f(x)$ (read, " f of x "). The output is also called the value of f at x or the image of x under f, and we say that f maps x into $f(x)$. It is common to denote the output by the single letter y and write $y=f(x)$. The set of all outputs y that results as x varies over the domain is called the range of f.

- A function is a set $\{(x, f(x)) \mid x$ in $D\}$ where $x=y$ means $f(x)=f(y)$
- Example:
- T(x_1,x_2)=(x_1,x_2) or the identity map.
- $T\left(x _1, x _2\right)=\left(c _1, c _2\right)$ or a constant map.
- Example: T: $\mathrm{R}^{3}->\mathrm{R}^{3}$. $T\left(x _1, x _2, x _3\right)=\left(x _1 x _2, x _2 x _3, x _3 x _1\right)$.
, Example: Given $2 x 3$ matrix $A=[[1,0,1],[0,2,1]]$, define $T\left(x _1, x _2, x _3\right)=\left(x _1+x _3,2 x _2+x _3\right)$. Or T_A(x)=Ax.
- Given a transformation T : $R^{n}->R^{m}$. A domain is R^{n} and codomain is R^{m}. The range is the actual set $T\left(R^{n}\right)$ in R^{m} which may or may not be the whole of R^{m}.
- An operator is a transformation $R^{n}->R^{n}$.

Matrix transformation

- Given A mxn matrix.
- We define T_A: $R^{n}->R^{m}$ by x-> $A x$ or $T(x)=A x$.
- T_A: multiplication by A, or transformation A.
- A matrix transformation and the matrix itself is often considered a same object.
, Example: zero transformation T_O(x)=Ox=O.
- Identity operator $T_{-} I(x)=I x=x$.

Linear transformation

- The term linear was used to denote that the order of a polynomial was no more than one.
, Here, we will change meaning somewhat.
- A transformation will be linear if it sends O to O and each line to a line and planes to planes and so on.
- It turns out that this means that the transformation preserves addition and scalar multiplications and conversely.
- Superposition principle:

$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{c} _1 \mathrm{v} _1+\mathrm{c} _2 \mathrm{v} _2+\ldots+\mathrm{c} _\mathrm{kv} \text { _k }\right)= \\
& \mathrm{c} 1 \mathrm{~T}\left(\mathrm{v} _1\right)+\mathrm{c} _2 \mathrm{~T}\left(\mathrm{v} _2\right)+\ldots+\mathrm{c} _\mathrm{kT}\left(\mathrm{v} _\mathrm{k}\right) .
\end{aligned}
$$

- Actually this is linearity. Physicists use it in different way also.

Definition 6.1.2 A function $T: R^{n} \rightarrow R^{m}$ is called a linear transformation from R^{n} to R^{m} if the following two properties hold for all vectors \mathbf{u} and \mathbf{v} in R^{n} and for all scalars c :
(i) $T(c \mathbf{u})=c T(\mathbf{u})$
[Homogeneity property]
(ii)
$T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \quad$ [Additivity property]
In the special case where $m=n$, the linear transformation T is called a linear operator on R^{n}.

- Example: matrix transformations are linear.

$$
\begin{aligned}
& \text { T_A(c_1x_1+c_2x_2)=A(c_1x_1+c_2x_2)=} \\
& c _1 A x _1+c _2 A x _2=c _1 T\left(x _1\right)+c _2 T\left(x _2\right) .
\end{aligned}
$$

- Example: $2^{\text {nd }}$ or higher order transformations are nonlinear. They do not preserve the scalar multiplication or additions sometimes.

$$
\begin{aligned}
& \text { T(x_1,x_2,x_3)=(x_1x_2,x_2x_3,x_3x_1). } \\
& T\left(2 x _1,2 x _2,2 x _3\right)=4 T\left(x _1, x _2, x _3\right) \text {. } \\
& T\left(x _1+x^{\prime} _1, x _2+x^{\prime} _2, x _3+x^{\prime} _3\right)=\left(\left(x _1+x^{\prime} _1\right)\left(x _2+x^{\prime} _2\right)\right. \text {, } \\
& \left.\left(x _2+x^{\prime} _2\right)\left(x _3+x^{\prime} _3\right),\left(x _3+x^{\prime} _3\right)\left(x _1+x^{\prime} _1\right)\right) \text { is not } \\
& T\left(x _1, x _2, x _3\right)+T\left(x^{\prime} _1, x^{\prime} _2, x^{\prime} _3\right) \text { for arbitrary choices. }
\end{aligned}
$$

Properties

Theorem 6.1.3 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then:
(a) $T(\mathbf{0})=\mathbf{0}$
(b) $T(-\mathbf{u})=-T(\mathbf{u})$
(c) $T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})$

- Proof: (a) $\mathrm{T}(\mathrm{O})=\mathrm{T}(0 \mathrm{v})=0 \mathrm{~T}(\mathrm{v})=\mathrm{O}$.
- Example: A translation is not linear.

$$
T(x)=x+x _0.0->x _0 .
$$

All linear transformations are matrix transformations

- Suppose that T is liner: $R^{n}->R^{m}$.
- $x=x _1 e_{1} 1+x _2 e _2+\ldots+x _n e _n$.
- $T(x)=x _1 T\left(e _1\right)+x _2 T\left(e _2\right)+. .+x_{-} n T\left(e _n\right)$.
- $T(x)=\left[T\left(e _1\right), T\left(e _2\right), \ldots, T\left(e _n\right)\right]\left[x _1, x _2, \ldots, x _n\right]^{\top}$.
- Let A be $\left[T\left(e_{-} 1\right), T\left(e _2\right), \ldots, T\left(e _n\right)\right]$. Then $T(x)=A x$.

Theorem 6.1.4 Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation, and suppose that vectors are expressed in column form. If $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard unit vectors in R^{n}, and if \mathbf{x} is any vector in R^{n}, then $T(\mathbf{x})$ can be expressed as

$$
\begin{equation*}
T(\mathbf{x})=A \mathbf{x} \tag{13}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

- A is a (standard) matrix corresponding to T .
- T is a transformation corresponding to A .
- T is a transformation represented by A .
- T is the transformation A .
- $A=[T]=\left[T\left(e _1\right), T\left(e _2\right), \ldots, T\left(e _n\right)\right]$.
- $T(x)=[T] x$.
- Example: $T(x)=c x . c$ is some number. T is linear and is called a scaling operator.
- Then $[\mathrm{T}]=\mathrm{cl}$.

Representing transformations by equations....

, R^{n} coordinates (x_1,x_2,...,x_n).

- R^{m} coordinates ($w, 1, w _2, \ldots, w _m$)
- Then (w_1,w_2,...,w_m)=T(x_1,x_2,...,x_n) can be written:

$$
\begin{aligned}
& \text { - w_1= a_11x_1+a_12x_2+...+a_1n x_n } \\
& \text { - w_2= a_21 x_1+a_22 x_2+...+a_2n x_n }
\end{aligned}
$$

```
* w_m=a_m1 x_1+a_m2 x_2+...+a_mn x_n.
```

- Conversely, this equation defines w=Ax and hence a linear transformation T_A.
- We can consider these identical definitions.

Rotations about the origin.

- Let us make a transformation that preserves length and send a vector to a vector rotated by an angle θ.
- e_1 -> $(\cos \theta, \sin \theta), e _2->(-\sin \theta, \cos \theta)$.
- Thus let [T] =[Te_1,Te_2]
$=[[\cos \theta,-\sin \theta],[\sin \theta, \cos \theta]]$.
- Thus R_ $\theta x=[[\cos \theta,-\sin \theta],[\sin \theta, \cos \theta]] x$.
- A rotation about nonorigin is not linear.

Reflection about a line through the origin.

- Take a line L through the origin having angle θ with the positive x-axis.
- T(e_1) is length 1 and has angle 2θ with the positive x-axis. $T\left(e _1\right)=(\cos 2 \theta, \sin 2 \theta)$.
- $\mathrm{T}(\mathrm{e} 2)$ is length 1 and has angle 2($\pi / 2-\theta$) with the positive y-axis and has angle ($\pi / 2-2 \theta$) with the positive x-axis.
$\mathrm{T}\left(\mathrm{e} _2\right)=(\cos (\pi / 2-2 \theta), \sin (\pi / 2-2 \theta))=(\sin 2 \theta,-\cos 2 \theta)$.
- H_ $\theta(x)=[[\cos 2 \theta, \sin 2 \theta],[\sin 2 \theta,-\cos 2 \theta]] x$
, Examples:
(a) $T(x, y)=(-y, x)$: reflection about the y-axis
(b) $T(x, y)=(x,-y)$: reflection about the x-axis.
(c) $T(x, y)=(y, x)$: reflection about $y=x$ line.
- Example 13: $\theta=\pi / 3$.
- H_m/3(x)
$=[[\cos (2 \pi / 3), \sin (2 \pi / 3)],[\sin (2 \pi / 3),-\cos (2 \pi / 3)]$
$=[[-1 / 2,1 / \sqrt{ } 3],[1 / \sqrt{ } 3,1 / 2]] x$.

Orthogonal projection onto the line through the origin.

- Define $P _\theta: R^{2}->R^{2}$ by sending a point x to a line L through O with angle θ with the positive x-axis.
- We find the formula by

P_ $\theta(x)-x=\left(H _\theta(x)-x\right) / 2$.

- Thus, $P _\theta(x)=H _\theta(x) / 2+x / 2=1 / 2\left(H _\theta+I\right)(x)$.
- $P _\theta=1 / 2\left(H _\theta+I\right)$.

$$
\left[\begin{array}{cc}
(1+\cos 2 \theta) / 2 & (\sin 2 \theta) / 2 \\
(\sin 2 \theta) / 2 & (1+\cos 2 \theta) / 2
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]
$$

- The projection to the x-axis. $\Theta=0$. Thus the matrix is [[1,0],[0,0]]. $(x, y)->(x, 0)$.
- The projection to the y-axis. $\Theta=\pi / 2$. Thus the matrix is $[[0,0],[0,1]] .(x, y)->(0, y)$.

