6.4 Composition and invertibility of linear transformations

Compositions of linear transformations

- A composition of functions: f:X->Y,g:Y->Z, we obtain $g \bullet f: X->Z$.
- If f and g are linear, then $g \cdot f$ is also linear.
- To verify, we need to show + and scalar multiplications are preserved.

Theorem 6.4.1 If $T_{1}: R^{n} \rightarrow R^{k}$ and $T_{2}: R^{k} \rightarrow R^{m}$ are both linear transformations, then $\left(T_{2} \circ T_{1}\right): R^{n} \rightarrow R^{m}$ is also a linear transformation.

- Recall $T(x)=[T] x$ (p.272. (14))
- (T_2•T-1)(e i)=
 (final step why?)
- Thus [T_2•T_1]=[T_2][T_1]. (why?)
- Conversely, given matrices A and B,
, T_B•T_A = T_BA. (Let T_2=T_B,T_1=T_A).
, Example 1. R_ $\theta \cdot$ R_ $\Phi=$ R_ $(\theta+\Phi)$. Verify using computations
- Example 2. $\mathrm{H} _\theta \cdot \mathrm{H} _\Phi=\mathrm{R}$ 2 $2(\Phi-\theta)$.
- Example 3. T•S may not equal S•T. We can see that from matrices $T_{-} A \cdot T_{-} B=T _A B . T_{-} B \cdot$ $T _A=T _B A$. They would be equal iff $A \bar{B}=B A$.

Compositions of three or more linear transformations.

- T_1:Rn->Rm,T_2:Rm_>R ${ }^{1}, T _3: R^{l->} R^{k}$ We define T_3•T_2•T_1:Rn->R ${ }^{k}$ by
- T_3•T_2•T_1(x)=T_3(T_2(T_1(x))).
- Since the compositions are associative, we have (T_3•T_2)•T_1=T_3•(T_2•T_1). Thus we can drop the paranthese.
- [T_3•T_2•T_1]=[T_3][T_2][T_1].
- [T_3•(T_2•T_1)]=[T_3][T_2•T_1]=[T_3](%5BT_2%5D%5BT_1%5D).

We use matrix multiplications are associative.

- T_C•T_B•T_A=T_CBA
- A classification:
- A rotation in R^{3} <-> $\operatorname{det} \mathrm{A}=1$.
- A reflection composed with a rotation in $R^{3}<->\operatorname{det} A=-$ 1.
- A product of series of rotations is a rotation.
- A product of series of reflections and rotations with an even number of reflections is a rotation.
- A product of series of reflections and rotations with an odd number of reflections is a reflection composed with a rotation.

Yaw, pitch and roll

- Yaw: z-axis (up direction), pitch:x-axis (wing direction), roll: y-axis (the direction of travel)
- Corresponding rotations are R_za,R_y $\beta, R _x y$.
- A composition of $R _z \alpha, R _y \beta, R _x y$ can be achieved by a single rotation $R _v \delta$ in some direction of certain angle.
- Given these, we multiply them to get R_vס, and then find the axis direction v and the rotation δ (between 0 and π).
- See Example 5.
- Conversely, any rotation can be factored into yaw, pitch, roll rotations.

Factoring linear operators ito compositions

- We wish to factor a matrix into elementary pieces so that we can understand it better.
- For example, a diagonal operator can be understood as a composition of contraction and expansion along individual axis. E
- We restrict to R^{2} only.
- Example 7: There are five types of elementary matrices:
- (I) [[1,k],[0,1]] a shear in x-direction, (II) $[[1,0],[k, 1]]$ a shear in y-direction, (III) $[[0,1],[1,0]]$ a reflection about $x=y$, (IV) $[[k, 0],[0,1]]$ compression or expansion for $k \geq 0$. (V) [[1,0],[0,k]] same. For k < 0, they are compression or expansion followed by a reflection.

Theorem 6.4.4 If A is an invertible 2×2 matrix, then the corresponding linear operator on R^{2} is a composition of shears, compressions, and expansions in the directions of the coordinate axes, and reflections about the coordinate axes and about the line $y=x$.

- Example 8: illustrates the factorization and how one can understand a linear transformation.

Inverse

, $\mathrm{T}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$. Suppose it is one-to-one.

- Let w be in the range of T.
- Then there is a unque x in R^{n} s.t. $T(x)=w$.
- Let $\mathrm{T}^{-1}(\mathrm{w})$ be defined as x .
- $w=T(x)$ <-> $x=T^{-1}(w)$ for w in range (T).
, T^{-1} : range(T) -> R^{n}.
- $\mathrm{TT}^{-1}=$ Id on range (T)
- $\mathrm{T}^{-1} \mathrm{~T}=\mathrm{Id}$ on R^{n}.

Theorem 6.4.5 If T is a one-to-one linear transformation, then so is T^{-1}.

Invertible linear operator

- If T is one-to-one and onto, then T^{-1} exists on the codomain, and is linear and one-to-one and onto. (The linearity already shown above. Other is just from the function theory)
- The matrix of T^{-1} is the inverse of the matrix of T . - $T^{-1} T(x)=\left[T^{-1}\right][T] x=x .\left[T^{-1}\right][T]=$.

Theorem 6.4.6 If T is a one-to-one linear operator on R^{n}, then the standard matrix for T is invertible and its inverse is the standard matrix for T^{-1}.

- $\left[\mathrm{T}^{-1}\right]=[T]^{-1}$.
- $\left(\mathrm{T} _A\right)^{-1}=\mathrm{T}$ _ $\left(\mathrm{A}^{-1}\right)$.
- An inverse of a rotation in R^{2} is a rotation with opposite angle.
- An inverse of a rotation in R^{3} is a rotation with the same axis with an opposite angle or an opposite axis with the same angle.
- An inverse of an expansion by k in an axis direction is a contraction by $1 / k$ in the same axis direction.
- An inverse of a reflection is the same reflection. $\mathrm{H}_{-} \theta \mathrm{H}-\theta=\mathrm{I}$.

Inverse and linear system

- $y=A x$ given by a linear system as in (18).
- We have $x=A^{-1} y$ given by a linear system.
- We can obtain the second linear system by the first one by solving.
- Example 12.

Geometric properties of the invertible linear operators in \mathbf{R}^{2}.

- What happens to lines, segments, polygons after acting by T ?

Theorem 6.4.7 If $T: R^{2} \rightarrow R^{2}$ is an invertible linear operator, then:
(a) The image of a line is a line.
(b) The image of a line passes through the origin if and only if the original line passes through the origin.
(c) The images of two lines are parallel if and only if the original lines are parallel.
(d) The images of three points lie on a line if and only if the original points lie on a line.
(e) The image of the line segment joining two points is the line segment joining the images of those points.

Theorem 6.4.8 If $T: R^{2} \rightarrow R^{2}$ is an invertible linear operator, then T maps the unit square into a nondegenerate parallelogram that has a vertex at the origin and has adjacent sides $T\left(\mathbf{e}_{1}\right)$ and $T\left(\mathbf{e}_{2}\right)$. The area of this parallelogram is $|\operatorname{det}(A)|$, where $A=\left[T\left(\mathbf{e}_{1}\right) \quad T\left(\mathbf{e}_{2}\right)\right]$ is the standard matrix for T.

