7_3 The fundamental spaces of a matrix.
 $$
0<0 \longmapsto 0>0
$$

Row space, column space, null space

+ A mxn matrix
+ Row space of A : row (A) : span of row vectors in R^{n}.
+ Column space of A : col(A): span of column vectors in R^{m}.
+ Null space of A : null(A): the solution space of $A x=O$.
ϕ In addition: $\operatorname{row}\left(\mathrm{A}^{\mathrm{T}}\right), \operatorname{col}\left(\mathrm{A}^{\mathrm{T}}\right), \operatorname{null}\left(\mathrm{A}^{\mathrm{T}}\right)$
$\Leftrightarrow \operatorname{row}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{col}(\mathrm{A}), \operatorname{col}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{row}(\mathrm{A})$.
\star So, $\operatorname{row}(A), \operatorname{col}(A), \operatorname{null}(A), \operatorname{null}\left(\mathrm{A}^{T}\right)$ are fundamental spaces of A.

Definition 7.3.1 The dimension of the row space of a matrix A is called the rank of A and is denoted by $\operatorname{rank}(A)$; and the dimension of the null space of A is called the nullity of A and is denoted by nullity (A).

Orthogonal complements

Definition 7.3.2 If S is a nonempty set in R^{n}, then the orthogonal complement of S, denoted by S^{\perp}, is defined to be the set of all vectors in R^{n} that are orthogonal to every vector in S.

* Example: A is nxn-matrix. The solution space of $\mathrm{Ax}=0$ is exactly the orthogonal complement of row vectors of A.
* Example: two vectors in R^{3}. The cross product solution.

Theorem 7.3.3 If S is a nonempty set in R^{n}, then S^{\perp} is a subspace of R^{n}.

Properties of the orthogonal complements

Theorem 7.3.4
(a) If W is a subspace of R^{n}, then $W^{\perp} \cap W=\{0\}$.
(b) If S is a nonempty subset of R^{n}, then $S^{\perp}=\operatorname{span}(S)^{\perp}$.
(c) If W is a subspace of R^{n}, then $\left(W^{\perp}\right)^{\perp}=W$.
\& Proof: (a) If v is in W^{c} and in W , then v is orthogonal to itself. $\mathrm{v} . \mathrm{v} .=||\mathrm{v}||^{2}=0$. The length of v is zero and v is zero.
\& (b) S^{c} is in $\operatorname{span}(S)^{c}$ since any vector v orthogonal to S is orthogonal to every vector in $\operatorname{span}(\mathrm{S})$.
$\operatorname{Span}(S)^{c}$ is in S^{c}. If v is orthogonal to $\operatorname{Span}(S)$, then v is orthogonal to S .

+ (c) later.

$\operatorname{row}(\mathrm{A})^{\mathrm{c}}=\operatorname{null}(\mathrm{A})$

Theorem 7.3.5 If A is an $m \times n$ matrix, then the row space of A and the null space of A are orthogonal complements.

Theorem 7.3.6 If A is an $m \times n$ matrix, then the column space of A and the null space of A^{T} are orthogonal complements.
\& Proof: The solution space is a set of vectors orthogonal to the row vectors of A .
$+\operatorname{row}(A)^{c}=\operatorname{null}(A), \operatorname{null}(A)^{c}=\operatorname{row}(A)$. (In $\left.R^{n}\right)$
$+\operatorname{col}(A)^{c}=\operatorname{null}\left(A^{T}\right), \operatorname{null}\left(A^{T}\right)^{c}=\operatorname{col}(A) .\left(\operatorname{In} R^{m}\right)$

Theorem 7.3.7

(a) Elementary row operations do not change the row space of a matrix.
(b) Elementary row operations do not change the null space of a matrix.
(c) The nonzero row vectors in any row echelon form of a matrix form a basis for the row space of the matrix.

The row operations will change the column space.
Theorem 7.3.8 If A and B are matrices with the same number of columns, then the following statements are equivalent.
(a) A and B have the same row space.
(b) A and B have the same null space.
(c) The row vectors of A are linear combinations of the row vectors of B, and conversely.
(a)<->(b). The null space is the orthogonal complement of the row space.
(c)->(a). Clear. (a)->(c). Row vectors of A span row space of B and conversely.

Finding basis by row

 reductions.+ $\mathrm{S}=\left\{\mathrm{v} _1, \mathrm{v} _2, \ldots, \mathrm{v} _\mathrm{s}\right\}$. Find a basis of Span S .
+1 . We form A where v_is are rows. Apply Gauss-Jordan elimination. This does not change the span and finds the basis.
+2 . Find a basis in S. This is slightly different. We will do this later.
+ Example 4. Given four vectors in R^{5}, we use GaussJordan elimination to obtain the echelon form. The basis is the set of row vectors.

* Example 4(b). Find a basis of W^{c}.
+ Form 4x5-matrix A. Obtain ref. Find the solution space and find its basis using the fundamental vectors.
* Example 5. Given v_1,v_2,v_3,v_4 in R^{5}, we find B such that the solution space of $B x=0$ is span W.
+ Use the basis of W^{c}.

Determining whether a vector is in a given subspace.

+ Problem 1. Given $S=\left\{\mathrm{v}_{-} 1, \mathrm{v}_{-} 2, . ., \mathrm{v} _\mathrm{s}\right\}$ in R^{m}, determine a condition on $b _1, \ldots, b _m$ so that $b=\left(b _1, \ldots, b _m\right)$ will lie in span S.
+ Problem 2. Given an mxn matrix A, find a condition on $\mathrm{b} _1, . ., \mathrm{b} _\mathrm{m}$ so that b lies in $\operatorname{col}(\mathrm{A})$.
* Problem 3. Given a linear transformation $T: R^{n}->R^{m}$, determine a condition on b s.t. b is in ranT.
+ Example 6.

