

Row space, column space, null space

- ♦ A mxn matrix
 - + Row space of A: row(A): span of row vectors in \mathbb{R}^n .
 - ♦ Column space of A: col(A): span of column vectors in R^m.
 - \rightarrow Null space of A: null(A): the solution space of Ax=O.
- \Rightarrow In addition: row(A^T), col(A^T), null(A^T)
- \Rightarrow row(A^T) = col(A), col(A^T) = row(A).
- ♦ So, row(A), col(A), null(A), null(A^T) are fundamental spaces of A.

Definition 7.3.1 The dimension of the row space of a matrix A is called the rank of A and is denoted by rank(A); and the dimension of the null space of A is called the nullity of A and is denoted by rank(A).

Orthogonal complements

Definition 7.3.2 If S is a nonempty set in \mathbb{R}^n , then the *orthogonal complement* of S, denoted by S^{\perp} , is defined to be the set of all vectors in \mathbb{R}^n that are orthogonal to every vector in S.

- ★ Example: A is nxn-matrix. The solution space of Ax=0 is exactly the orthogonal complement of row vectors of A.
- \Rightarrow Example: two vectors in \mathbb{R}^3 . The cross product solution.

Theorem 7.3.3 If S is a nonempty set in \mathbb{R}^n , then \mathbb{S}^{\perp} is a subspace of \mathbb{R}^n .

Properties of the orthogonal complements

Theorem 7.3.4

- (a) If W is a subspace of R^n , then $W^{\perp} \cap W = \{0\}$.
- (b) If S is a nonempty subset of R^n , then $S^{\perp} = \operatorname{span}(S)^{\perp}$.
- (c) If W is a subspace of R^n , then $(W^{\perp})^{\perp} = W$.
- * Proof: (a) If v is in W^c and in W, then v is orthogonal to itself. $v.v.=|v||^2=0$. The length of v is zero and v is zero.
- ♦ (b) S^c is in span(S)^c since any vector v orthogonal to S is orthogonal to every vector in span(S).
 - ♦ Span(S)^c is in S^c. If v is orthogonal to Span(S), then v is orthogonal to S.

$row(A)^c = null(A)$

Theorem 7.3.5 If A is an $m \times n$ matrix, then the row space of A and the null space of A are orthogonal complements.

Theorem 7.3.6 If A is an $m \times n$ matrix, then the column space of A and the null space of A^T are orthogonal complements.

- ♣ Proof: The solution space is a set of vectors orthogonal to the row vectors of A.
- \Rightarrow row(A)^c=null(A), null(A)^c=row(A). (In Rⁿ)
- \Rightarrow col(A)^c=null(A^T), null(A^T)^c=col(A). (In R^m)

Theorem 7.3.7

- (a) Elementary row operations do not change the row space of a matrix.
- (b) Elementary row operations do not change the null space of a matrix.
- (c) The nonzero row vectors in any row echelon form of a matrix form a basis for the row space of the matrix.

The row operations will change the column space.

Theorem 7.3.8 If A and B are matrices with the same number of columns, then the following statements are equivalent.

- (a) A and B have the same row space.
- (b) A and B have the same null space.
- (c) The row vectors of A are linear combinations of the row vectors of B, and conversely.
- (a)<->(b). The null space is the orthogonal complement of the row space.
- (c)->(a). Clear. (a)->(c). Row vectors of A span row space of B and conversely.

Finding basis by row reductions.

- \Rightarrow S = {v_1,v_2,...,v_s}. Find a basis of Span S.
- ♦ 1. We form A where v_is are rows. Apply Gauss-Jordan elimination. This does not change the span and finds the basis.
- ♦ 2. Find a basis in S. This is slightly different. We will do this later.
- ★ Example 4. Given four vectors in R⁵, we use Gauss-Jordan elimination to obtain the echelon form. The basis is the set of row vectors.

♦ Example 4(b). Find a basis of W^c.

- ✦ Form 4x5-matrix A. Obtain ref. Find the solution space and find its basis using the fundamental vectors.
- ♦ Example 5. Given v_1,v_2,v_3,v_4 in R⁵, we find B such that the solution space of Bx=0 is span W.
 - ♦ Use the basis of W^c.

Determining whether a vector is in a given subspace.

- ♣ Problem 1. Given S={v_1,v_2,...,v_s} in R^m, determine a condition on b_1,...,b_m so that b=(b_1,...,b_m) will lie in span S.
- ♦ Problem 2. Given an mxn matrix A, find a condition on b_1,..,b_m so that b lies in col(A).
- ♦ Problem 3. Given a linear transformation T:Rⁿ->R^m, determine a condition on b s.t. b is in ranT.
- ♦ Example 6.