7_5. The rank theorem

Column rank = row rank.

A deep thought indeed!

The rank theorem

Theorem 7.5.1 (*The Rank Theorem*) The row space and column space of a matrix have the same dimension.

- Proof: Let $T:R^m->R^n$ be defined by T(x)=Ax. Then
 - dim ranT=dim column space A since v=x_1A_1+..+x_nA_n for v in ran T and A_I column vectors.
 - Ker T= null A.
 - dim ran T + dim ker T = n.
 - Choose a basis a_1,..,a_k in ker T.
 - Expand a_k+1,...,a_n in Rⁿ to a basis.
 - T(a_k+1)...,T(a_n) is independent. They span ran T.
 - Thus n-k = dim ran T.
 - dim column space A + nullity A =n.
 - rank A+ nullity A=n. The Proof is done.
- Example 1:

Theorem 7.5.2 If A is an $m \times n$ matrix, then

$$rank(A) = rank(A^T)$$
(3)

- rank(A^T)+nullity(A^T)=m. (A^T is nxm matrix)
- rank(A)+nullity(A^T)=m.
- Thus the dimension of four fundamental space is determined from a single number rank A.
- dim row A = k, dim null A=n-k, dim colA=k, dim nullA^T=m-k.
- See Example 2.

The relationship between consistency and rank.

Theorem 7.5.3 (*The Consistency Theorem*) If $A\mathbf{x} = \mathbf{b}$ is a linear system of m equations in n unknowns, then the following statements are equivalent.

- (a) $A\mathbf{x} = \mathbf{b}$ is consistent.
- (b) **b** is in the column space of A.
- (c) The coefficient matrix A and the augmented matrix $[A \mid \mathbf{b}]$ have the same rank.
 - Proof: (a) <->(b) by Theorem 3.5.5.
 (a)<->(c). Put both into ref. Then the number of the nonzero rows are the same for consistency.
 - Example 3:

Definition 7.5.4 An $m \times n$ matrix A is said to have *full column rank* if its column vectors are linearly independent, and it is said to have *full row rank* if its row vectors are linearly independent.

Theorem 7.5.5 Let A be an $m \times n$ matrix.

- (a) A has full column rank if and only if the column vectors of A form a basis for the column space, that is, if and only if rank(A) = n.
- (b) A has full row rank if and only if the row vectors of A form a basis for the row space, that is, if and only if rank(A) = m.
 - Proof: clear

Theorem 7.5.6 If A is an $m \times n$ matrix, then the following statements are equivalent.

- (a) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (b) $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b} in R^m .
- (c) A has full column rank.
 - Proof: (a)<->(b) Theorem 3.5.3.
 - (a)<->(c). Ax=0 can be written x_1a_1+...+x_na_n=0. The trival solution <-> a_i independent. <-> A has full column rank.
 - Example 5.

Overdetermined and underdetermined

- A mxn-matrix.
 - If m>n, then overdetermined.
 - If m <n, then underdetermined.

Theorem 7.5.7 Let A be an $m \times n$ matrix.

- (a) (Overdetermined Case) If m > n, then the system $A\mathbf{x} = \mathbf{b}$ is inconsistent for some vector \mathbf{b} in R^m .
- (b) (Underdetermined Case) If m < n, then for every vector \mathbf{b} in R^m the system $A\mathbf{x} = \mathbf{b}$ is either inconsistent or has infinitely many solutions.
 - Proof(a): m>n. The column vectors of A cannot span R^m.
 - (b): m<n. The column vectors of A is linearly dependent. Ax=0 has infinitely many solutions. Use Theorem 3.5.2.

Matrices of form A^TA and AA^T.

- AA^T. The ij-th entry is a_i.a_j. a_i column vector
- A^TA. The ij-th entry is r_i.r_j. r_i row vector

Theorem 7.5.8 If A is an $m \times n$ matrix, then:

- (a) A and $A^{T}A$ have the same null space.
- (b) A and $A^{T}A$ have the same row space.
- (c) A^T and A^TA have the same column space.
- (d) A and $A^{T}A$ have the same rank.

- Proof (a). null A is a subset of null A^TA . (if Ax=0, then $A^TAx=0$).
 - null A^TA is a subset of null A. (If A^TAv=0, then v is orthogonal to every row vector of A^TA. Since A^TA is symmetric, v is orthogonal to every column vectors of A^TA. Thus, v^TA^TAv=0. (Av)^TAv=0. Thus Av.Av=0 and Av=0.
 - (b) By Theorem 7.3.5. The complements are the same.
 - (c). The column space of A^T is the row space of A.
 - (d). From (b).

Theorem 7.5.9 If A is an $m \times n$ matrix, then:

- (a) A^T and AA^T have the same null space.
- (b) A^T and AA^T have the same row space.
- (c) A and AA^T have the same column space.
- (d) A and AA^T have the same rank.

Unifying theorem.

Theorem 7.5.10 If A is an $m \times n$ matrix, then the following statements are equivalent.

- (a) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (b) $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b} in \mathbb{R}^m .
- (c) A has full column rank.
- (d) $A^{T}A$ is invertible.

Proof) (a)<->(b)<->(c). Done before. (c)<->(d). A^TA is an nxn matrix. A^TA is invertible if and only if A^TA is of full rank. By Theorem 7.5.8(d), this is if and only if A is full rank. **Theorem 7.5.11** If A is an $m \times n$ matrix, then the following statements are equivalent.

- (a) $A^T \mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (b) $A^T \mathbf{x} = \mathbf{b}$ has at most one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (c) A has full row rank.
- (d) AA^T is invertible.

• Example 7: