7.6 The pivot theorem

Basis problem

- Now address the problem of extracting a basis in S for the Span(S).
- The row operations changes the column spaces.
- If A and B are row equivalent, then Ax=0, Bx=0 have the same set of solutions.
- Ax=0 <-> x_1a_1+x_2a_2+...+x_na_n=0.
- Bx=0 <-> x_1b_1+x_2b_2+...+x_nb_n=0.

Theorem 7.6.1 Let A and B be row equivalent matrices.

- (a) If some subset of column vectors from A is linearly independent, then the corresponding column vectors from B are linearly independent, and conversely.
- (b) If some subset of column vectors from B is linearly dependent, then the corresponding column vectors from A are linearly dependent, and conversely. Moreover, the column vectors in the two matrices have the same dependency relationships.
 - Proof: If necessary form A' from the set of column vectors of A.
 - Thus our strategy is to ref A and choose the pivot columns as basis and transfer back to A.
 - Example 1.

Pivot theorem

Definition 7.6.2 The column vectors of a matrix *A* that lie in the column positions where the leading 1's occur in the row echelon forms of *A* are called the *pivot columns* of *A*.

Theorem 7.6.3 (The Pivot Theorem) The pivot columns of a nonzero matrix A form a basis for the column space of A.

• Proof: We see that leading 1s are at every position in the pivot column vectors.

Pivot algorithm

Algorithm 1 If *W* is the subspace of R^n spanned by $S = \{v_1, v_2, ..., v_s\}$, then the following procedure extracts a basis for *W* from *S* and expresses the vectors of *S* that are not in the basis as linear combinations of the basis vectors.

- **Step 1.** Form the matrix A that has $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s$ as successive column vectors.
- **Step 2.** Reduce A to a row echelon form U, and identify the columns with the leading 1's to determine the pivot columns of A.
- **Step 3.** Extract the pivot columns of *A* to obtain a basis for *W*. If appropriate, rewrite these basis vectors in comma-delimited form.
- **Step 4.** If it is desired to express the vectors of *S* that are not in the basis as linear combinations of the basis vectors, then continue reducing U to obtain the reduced row echelon form *R* of *A*.
- **Step 5.** By inspection, express each column vector of R that does not contain a leading 1 as a linear combination of preceding column vectors that contain leading 1's. Replace the column vectors in these linear combinations by the corresponding column vectors of A to obtain equations that express the column vectors of A that are not in the basis as linear combinations of basis vectors.

Example 2

- Given W=span(S). S finite.
- (a) Extract basis in S.
- (b) Express other vectors in S

Basis for the fundamental spaces

- A mxn -> U upper echelon -> R ref.
- 1. row(A): basis nonzero rows of U or R.
- 2. col(A): pivot columns of A.
- 3. null(A): canonical solutions from Rx=0.
- 4. null(A^T): Solve $A^Tx=0$.
- A mxn rank k. dim null(A^T)= m-k. Why? If k=m, dim=0.
- Another method using row operations only.

Algorithm 2 If A is an $m \times n$ matrix with rank k, and if k < m, then the following procedure produces a basis for null(A^T) by elementary row operations on A.

- **Step 1.** Adjoin the $m \times m$ identity matrix I_m to the right side of A to create the partitioned matrix $[A \mid I_m]$.
- **Step 2.** Apply elementary row operations to $[A | I_m]$ until A is reduced to a row echelon form U, and let the resulting partitioned matrix be [U | E].
- **Step 3.** Repartition [U | E] by adding a horizontal rule to split off the zero rows of U. This yields a matrix of the form

$$\begin{bmatrix} V & \vdots & E_1 \\ \hline 0 & \vdots & E_2 \\ n & m \end{bmatrix} \begin{pmatrix} k \\ m - k \\ n \end{pmatrix}$$

where the margin entries indicate sizes.

Step 4. The row vectors of E_2 form a basis for null(A^T).

• Example 3:

Column-row factorization

Theorem 7.6.4 (*Column-Row Factorization*) If A is a nonzero $m \times n$ matrix of rank k, then A can be factored as

A = CR

(1)

where C is the $m \times k$ matrix whose column vectors are the pivot columns of A and R is the $k \times n$ matrix whose row vectors are the nonzero rows in the reduced row echelon form of A.

- Proof: EA=R_0. E mxm matrix a product of elementary matrices.
 - R_0 ref of A. mxn-matrix
 - Let R be the kxn-matrix of nonzero rows of R₀.
 - Then let $E^{-1}=[C | D] C mxk$. D mx(m-k)

$$R_0 = \left\lfloor \frac{R}{O} \right\rfloor$$

• Proof continued:

• A=E⁻¹R=
$$[C \mid D] \left[\frac{R}{O} \right] = CR + DO = CR$$

- C consists of pivot columns of A.
 - Multiplying by E⁻¹ to R_0 returns to A.
 - Restrict to pivot columns of R -> pivot columns of A.
 - Pivot columns of R form I of kxk size.
 - CR restricted CI=C. Thus C is the pivot columns of A.
 - Example 4.

Column-row expansion

• We can write the above as the sum of vector products...

Theorem 7.6.5 (*Column-Row Expansion*) If A is a nonzero matrix of rank k, then A can be expressed as

 $A = \mathbf{c}_1 \mathbf{r}_1 + \mathbf{c}_2 \mathbf{r}_2 + \dots + \mathbf{c}_k \mathbf{r}_k$

(4)

where $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_k$ are the successive pivot columns of A and $\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_k$ are the successive nonzero row vectors in the reduced row echelon form of A.

Column-row rule (Theorem 3.8.1)

г٦

$$A^{m \times s} = [c_1, c_2, ..., c_s], B^{sxn} = \begin{vmatrix} r_1 \\ r_2 \\ \vdots \\ r_s \end{vmatrix}$$

$$(AB)_{ij} = \sum_{k=1}^{s} A_{ik}B_{kj} = \sum_{k=1}^{s} c_{ik}r_{kj}$$

$$AB = \sum_{k=1}^{s} c_{k}r_{k} = c_{1}r_{1} + c_{2}r_{2} + \cdots + c_{s}r_{s}$$