
7.6 The pivot theorem



Basis problem

 Now address the problem of extracting a basis in S for
the Span(S).

 The row operations changes the column spaces.

 If A and B are row equivalent, then Ax=0, Bx=0 have the
same set of solutions.

 Ax=0 <-> x_1a_1+x_2a_2+…+x_na_n=0.

 Bx=0 <-> x_1b_1+x_2b_2+…+x_nb_n=0.



 Proof: If necessary form A’ from the set of column
vectors of A.

 Thus our strategy is to ref A and choose the pivot
columns as basis and transfer back to A.

 Example 1.



Pivot theorem

 Proof: We see that leading 1s are at every position in
the pivot column vectors.



Pivot algorithm



Example 2

 Given W=span(S). S finite.

 (a) Extract basis in S.

 (b) Express other vectors in S



Basis for the fundamental spaces

 A mxn -> U upper echelon -> R ref.

 1. row(A): basis nonzero rows of U or R.

 2. col(A): pivot columns of A.

 3. null(A): canonical solutions from Rx=0.

 4. null(AT):  Solve ATx=0.

 A mxn rank k. dim null(AT)= m-k. Why? If k=m, dim=0.

 Another method using row operations only.



 Example 3:



Column-row factorization

 Proof: EA=R_0. E mxm matrix a product of elementary
matrices.
 R_0 ref of A. mxn-matrix
 Let R be the kxn-matrix of nonzero rows of R0.
 Then let E-1=[C|D] C mxk. D mx(m-k)
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 Proof continued:

 A=E-1R=

 C consists of pivot columns of A.
 Multiplying by E-1 to R_0 returns to A.

 Restrict to pivot columns of R -> pivot columns of A.

 Pivot columns of R form I of kxk size.

 CR restricted CI=C. Thus C is the pivot columns of A.

 Example 4.
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Column-row expansion

 We can write the above as the sum of vector products…
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Column-row rule (Theorem 3.8.1)
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