QR-DECOMPOSITION

HOUSEHOLDER TRANSFORMATIONS

QR-decomposition

+ A mxk matrix with columns w_1,w_2,...,w_k. m-vectors.
+ We find an orthonomal basis $q_{_} 1, q_{_} 2, \ldots, q_{_} k, q_{_} k+1, \ldots, q_{-} m$ of R^{m}.
* Then since $\mathrm{q}_{\mathrm{i}} \mathrm{i}$ is orthogonal to $\mathrm{w}_{-} 1, \ldots, \mathrm{w} _\mathrm{k}-1$.

$$
\begin{aligned}
& \text { w_1=(w_1.q_1)q_1 } \\
& \text { w_2=(w_2.q_1)q_1+(w_2.q_2).q_2. }
\end{aligned}
$$

w_k=(w_k.q_1)q_1+(w_k.q_2)q_2+...+(w_k.q_k)q_k.

* Use Theorem 3.1.8, $\mathrm{A}=\mathrm{QR}$

$$
\left[\begin{array}{llll}
w_{1} & w_{2} & \cdots & w_{k}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{k}
\end{array}\right]\left[\begin{array}{cccc}
\left(w_{1} \cdot q_{1}\right) & \left(w_{2} \cdot q_{1}\right) & \cdots & \left(w_{1} \cdot q_{k}\right) \\
0 & \left(w_{2} \cdot q_{2}\right) & \cdots & \left(w_{2} \cdot q_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \left(w_{k} \cdot q_{k}\right)
\end{array}\right]
$$

Theorem 7.10.1 (QR-Decomposition) If A is an $m \times k$ matrix with full column rank, then A can be factored as

$$
\begin{equation*}
A=Q R \tag{4}
\end{equation*}
$$

where Q is an $m \times k$ matrix whose column vectors form an orthonormal basis for the column space of A and R is a $k \times k$ invertible upper triangular matrix.

$$
+\mathrm{A}=\mathrm{QR} .
$$

+ Assume A is a square matrix mxm. $\rightarrow>0$
\star Then $Q^{T} Q=I$ since $\left(Q^{T} Q\right) _i j=q_{i} i^{T} q_{-} j=1(i=j), 0(i, j$ different) -> Q is orthogonal.
* Since the inverse of Q is Q^{T}, we have $\mathrm{R}=\mathrm{Q}^{\mathrm{T}} \mathrm{A}$.
+ See Example 1.

QR-decompositions and the least square problem

$+A x=b$. best approximate solution $x^{\prime}=\left(A^{T} A\right)^{-1} \mathrm{~A}^{T} b$.

+ We write $A=Q R . A^{T}=R^{T} Q^{T}$.
$+\mathrm{A}^{\mathrm{T}} \mathrm{Ax}=\mathrm{A}^{\mathrm{T}} \mathrm{b}$.
$+\mathrm{R}^{\mathrm{T}} \mathrm{Q}^{\mathrm{T}} \mathrm{QRx}=\mathrm{R}^{\mathrm{T}} \mathrm{Q}^{\mathrm{T}} \mathrm{b}$.

Theorem 7.10.2 If A is an $m \times k$ matrix with full column rank, and if $A=Q R$ is a $Q R$-decomposition of A, then the normal system for $A \mathbf{x}=\mathbf{b}$ can be expressed as

$$
\begin{equation*}
R \mathbf{x}=Q^{T} \mathbf{b} \tag{9}
\end{equation*}
$$

and the least squares solution can be expressed as

$$
\begin{equation*}
\hat{\mathbf{x}}=R^{-1} Q^{T} \mathbf{b} \tag{10}
\end{equation*}
$$

+ Example 2.
* We will use Householder reflections to find Q instead since it has advantages in computer calculations.
\& We obtain a formula for reflections:
+ Let a^{c} be the orthogonal hyperplane to span $\{\mathrm{a}\}$

$$
\text { x-refl_ac }{ }^{c}(x)=2 \text { proj_a }(x) .
$$

Thus refl $a^{c}(x)=x-2$ proj_ $a(x)=x-2 a(x . a) /||a||^{2}$.

Definition 7.10.3 If a is a nonzero vector in R^{n}, and if \mathbf{x} is any vector in R^{n}, then the reflection of \mathbf{x} about the hyperplane \mathbf{a}^{\perp} is denoted by refl ${ }_{\mathbf{a}}{ }^{\perp} \mathbf{x}$ and defined as

$$
\begin{equation*}
\operatorname{reff}_{\mathbf{a}} \perp \mathbf{x}=\mathbf{x}-2 \operatorname{proj}_{\mathbf{a}} \mathbf{x} \tag{11}
\end{equation*}
$$

The operator $T: R^{n} \rightarrow R^{n}$ defined by $T(\mathbf{x})=\operatorname{refl}_{\mathfrak{a}^{\perp}} \perp$ is called the reflection of \boldsymbol{R}^{n} about the hyperplane \mathbf{a}^{\perp}.

* Thus the matrix $H _a^{c}$ for refl $_a^{c}$ is $H _a^{c}=I-2 a a^{T} / a^{T} a$.
ϕ If a is a unit vector u, then $u^{T} u=||u||^{2}=1$.
\nrightarrow refl $_a^{c}=x-2(x . u) u$ and $H _u^{c}=I-u u^{T}$.
* See Example 3 and 4.

Definition 7.10.4 An $n \times n$ matrix of the form

$$
\begin{equation*}
H=I-\frac{2}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}^{T} \tag{16}
\end{equation*}
$$

in which a is a nonzero vector in R^{n} is called a Householder matrix. Geometrically, H is the standard matrix for the Householder reflection about the hyperplane \mathbf{a}^{\perp}.

Theorem 7.10.5 Householder matrices are symmetric and orthogonal.

$$
\begin{aligned}
& + \text { Proof: } \mathrm{H}^{\mathrm{T}}=\mathrm{I}-\left(2 / \mathrm{a}^{\mathrm{T}} \mathrm{a}\right)\left(\mathrm{aa}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{H} \text {. } \\
& \text { HH=(I-2aa } \left.{ }^{T} / a^{T} a\right)\left(I-2 a a^{T} / a^{T} a\right)=I-4 a a^{T} / a^{T} a \\
& +\left(2 \mathrm{aa}^{\mathrm{T}} /\left(\mathrm{a}^{\mathrm{T}} \mathrm{a}\right)\right)\left(2 \mathrm{aa}^{\mathrm{T}} /\left(\mathrm{a}^{\mathrm{T}} \mathrm{a}\right)\right)=\mathrm{I}\left(\text { since } 4 \left(1 /\left(\mathrm{a}^{\mathrm{T}} \mathrm{a}^{2}\right)\left(\mathrm{aa}^{\mathrm{T}} \mathrm{aa}^{\mathrm{T}}\right)=\right.\right. \\
& \left.4\left(1 /\left(a^{T} a\right)^{2}\right)\left(\left(a^{T} a\right) a a^{T}\right)=4\left(1 /\left(a^{T} a\right)\right)\left(a a^{T}\right) .\right)
\end{aligned}
$$

Theorem 7.10.6 If \mathbf{v} and \mathbf{w} are distinct vectors in R^{n} with the same length, then the Householder reflection about the hyperplane $(\mathbf{v}-\mathbf{w})^{\perp}$ maps \mathbf{v} into \mathbf{w}, and conversely.

QR-decomposition using householder reflections

* The steps given A nxn matrix
* We apply a Householder matix Q 1 so that Q $1 A$ has ($\left.\left|\left|a _1\right|\right|, 0, \ldots, 0\right)$ as the first column by choosing $Q 1$ so that Q_1a_1=[||a_1||,0,...,0] ${ }^{\mathrm{T}}$.
\rightarrow Now choose Q 2 which is 1 at (1,1)-entry and zero on elsewhere in the 1 -st row and the 1 -st column.
$\$$ Now concentrate on $(\mathrm{n}-1) \mathrm{x}(\mathrm{n}-1)$-matrix in Q 1 A removing $1^{\text {st }}$ column and the $1{ }^{\text {st }}$-row
$+\quad \mathrm{Q} 2$ sends the $2^{\text {nd }}$ column $a^{\prime} _2$ of $Q 1 A$ to $[*, x, 0, . ., 0]^{T}$, nonzero x.
\& We keep doing this... Q n-1...Q 2Q 1 A is upper triangular. We let it be R and $\mathrm{Q}=\mathrm{Q} 1 \mathrm{Q} 2 \ldots \mathrm{Q} \mathrm{n}-1$. (notice the order change!)
+ Example 7:

