7.11. Coordinates with respect to a basis

Each basis gives you are coordinate system and conversely.

Nonrectangular coordinates

 Given a basis v_1,v_2,..,v_n, we can write each vector v as a unique linear combination.

- Fixing a basis, v->(c_1,c_2,..,c_n)
- This is sensitive to the order of v is.
- This gives us a coordinate system.
- Conversely, given any coordinate system (1,0,..,0)->v_1, (0,1,0,..,0)->v_2,...,(0,0,..,1)->v_n. This forms a basis.

Definition 7.11.1 If $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an ordered basis for a subspace W of R^n , and if

$$\mathbf{w} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k$$

is the expression for a vector \mathbf{w} in W as a linear combination of the vectors in B, then we call

$$a_1, a_2, \ldots, a_n$$

the *coordinates of* w *with respect to* B; and more specifically, we call a_j the \mathbf{v}_j -coordinate of w. We denote the ordered k-tuple of coordinates by

$$(\mathbf{w})_B = (a_1, a_2, \dots, a_k)$$

and call it the *coordinate vector* for \mathbf{w} with respect to B; and we denote the column vector of coordinates by

$$[\mathbf{w}]_B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix}$$

and call it the *coordinate matrix* for w with respect to B.

- Example B={(0,1),(1,0)}
 - \circ (a,b)=b(0,1)+a(1,0). ->[(a,b)]_B=(b,a)
- Example 1. $B=\{(2,1,2),(3,0,-1),(5,0,0)\}.$
 - \circ (3,1,4)=1(2,1,2)-2(3,0,-1)+(5,0,0)
 - \circ [(3,1,4)]_B=(1,-2,1).
- Example 2. B={e_1,e_2,..,e_n}
 - w=(w_1,w_2,..,w_n)
 =w_1e_1+w_2e_2+...+w_ne_n
 - \circ [w]_B=(w_1,w_2,...,w_n)

Coordinates with respect to orthonormal basis.

- Let B={v 1,v 2,..,v n} be an orthonomal basis of Rⁿ.
- We know $w=(w.v_1)v_1+(w.v_2)v_2+...+(w.v_n)v_n$.
 - [w]_B=((w.v_1),(w.v_2),...,(w.v_n))
- Example 3. B={(cos t,sint),(-sint, cos t)}
 - (a,b) = (acost + bsint)(cost,sint)+(-asint+bcost)(-sint, cost).
 - [(a,b)]_B=(acost+bsint,-asint+bcost)

Computing with coordinates w.r.t. orthonomal basis

 Dot product, norms are preserved under "coordinate changes"

Theorem 7.11.2 If B is an orthonormal basis for a k-dimensional subspace W of \mathbb{R}^n , and if \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in W with coordinate vectors

$$(\mathbf{u})_B = (u_1, u_2, \dots, u_k), \quad (\mathbf{v})_B = (v_1, v_2, \dots, v_k), \quad (\mathbf{w})_B = (w_1, w_2, \dots, w_k)$$

then:

(a)
$$\|\mathbf{w}\| = \sqrt{w_1^2 + w_2^2 + \dots + w_k^2} = \|(\mathbf{w})_B\|$$

(b)
$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_k v_k = (\mathbf{u})_B \cdot (\mathbf{v})_B$$

Change of basis problems

The Change of Basis Problem If w is a vector in \mathbb{R}^n , and if we change the basis for \mathbb{R}^n from a basis B to a basis B', how are the coordinate matrices $[\mathbf{w}]_B$ and $[\mathbf{w}]_{B'}$ related?

- Solution: B={v_1,v_2,...,v_n}.
 B'={v' 1,v' 2,...,v' n}.
 - v_1=p_11v'_1+p_21v'_2+...+p_n1v'_n.
 - v_2=p_12v'_1+p_22v'_2+...+p_n2v'_n.
 - 0
 - v_n=p_1nv'_1+p_2nv'_2+...+p_nnv'_n.

- Let w be any vector in Rⁿ.
- w=a_1v_1+..._+a_nv_n.[w]_B=(a_1,..,a_n)
 - w=a_1(p_11v'_1+p_21v'_2+...+p_n1v'_n)
 +a_2(p_12v'_1+p_22v'_2+...+p_n2v'_n)+...
 +a_n(p_1nv'_1+p_2nv'_2+...+p_nnv'_n)
 =(a_1p_11+a_2p_12+...+a_np_1n)v'_1
 +(a_1p_21+a_2p_22+...+a_np_2n)v'_2+...
 +(a_1p_n1+a_2p_n2+...+a_np_nn)v'_n
- Since the entries equal P times column vector (a_1,...,a_n)
- $[w]_B'=P_(B->B')[w]_B$.

Theorem 7.11.3 (Solution of the Change of Basis Problem) If w is a vector in \mathbb{R}^n , and if $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{v}_1', \mathbf{v}_2', \dots, \mathbf{v}_n'\}$ are bases for \mathbb{R}^n , then the coordinate matrices of w with respect to the two bases are related by the equation

$$[\mathbf{w}]_{B'} = P_{B \to B'}[\mathbf{w}]_B \tag{10}$$

where

$$P_{B\to B'} = [[\mathbf{v}_1]_{B'} \mid [\mathbf{v}_2]_{B'} \mid \dots \mid [\mathbf{v}_n]_{B'}]$$
(11)

This matrix is called the transition matrix (or the change of coordinates matrix) from B to B'.

- Example 5. Let B={(1,0),(0,1)},B'={(cos t,sint),(-sint, cos t)}
 - (1,0)=cost(cost,sint)+(-sint)(-sint,cost)
 - (0,1)=sint(cost,sint)+(cost)(-sint,cost).
 - Then P_(B->B')=[[cost,sint], [-sint,cost]].

Invertibility of transition matrices.

- B_1,B_2,B_3 three basis of Rⁿ.
- Then
 - P_(B_2->B_3)P_(B_1->B_2)=P_(B_1->B_3).
 - We omit proof.
 - P_(B_2->B_1)P_(B_1->B_2)
 - =P_(B_1->B_1)=I.

Theorem 7.11.4 If B and B' are bases for R^n , then the transition matrices $P_{B'\to B}$ and $P_{B\to B'}$ are invertible and are inverses of one another; that is,

$$(P_{B'\to B})^{-1} = P_{B\to B'}$$
 and $(P_{B\to B'})^{-1} = P_{B'\to B}$

A Procedure for Computing $P_{B\to B'}$

- **Step 1.** Form the matrix $[B' \mid B]$.
- **Step 2.** Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form.
- **Step 3.** The resulting matrix will be $[I \mid P_{B \to B'}]$.
- **Step 4.** Extract the matrix $P_{B\to B'}$ from the right side of the matrix in Step 3.
 - **Proof:** To find [v_i]_B' we solve for [v'_1,v'_2,...,v'_n]x=v_i.
 - Form [v'_1,v'_2,...,v'_n|v_i] -> ref is [l|y] for some y.
 y=[v_i]_B' (Why?)
 - [v'_1,v'_2,...,v'_n|v_1,v_2,...,v_n]->
 [I|P_(B->B')].
 - Example 7.

Coordinate maps

- B a basis.
- x->(x)_B=[x]_B is a coordinate map.
- (cv)_B=cx_B since [cv]_B=c[v]_B
- (v+w)_B=v_B+w_B since [v+w]_B=[v]_B+[w]_B.

Theorem 7.11.5 If B is a basis for R^n , then the coordinate map $\mathbf{x} \to (\mathbf{x})_B$ (or $\mathbf{x} \to [\mathbf{x}]_B$) is a one-to-one linear operator on R^n . Moreover, if B is an orthonormal basis for R^n , then it is an orthogonal operator.

Theorem 7.11.6 If A and C are $m \times n$ matrices, and if B is any basis for R^n , then A = C if and only if $A[\mathbf{x}]_B = C[\mathbf{x}]_B$ for every \mathbf{x} in R^n .

Orthonomal basis and transition matrices

Theorem 7.11.7 If B and B' are orthonormal bases for R^n , then the transition matrices $P_{B\to B'}$ and $P_{B'\to B}$ are orthogonal.

Proof: [v_1]_B', [v_2]_B',...,[v_n]_B' is orthonormal also by Theorem 7.11.12.

- We can think of matrix as transformations. But we can also think of a nonsingular matrix as a transition matrix.
- Any nonsingular matrix can be considered a matrix of n column vectors forming a basis.
- See Example 9.

Theorem 7.11.8 If P is an invertible $n \times n$ matrix with column vectors $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$, then P is the transition matrix from the basis $B = \{\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n\}$ for R^n to the standard basis $S = \{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ for R^n .