Orthogonal diagonalizability

Symmetric matrices can be diagonalized by an orthogonal matrix

Orthogonal similarity

• If P is orthogonal, then $P^{-1}=P^{T}$.

Definition 8.3.1 If A and C are square matrices with the same size, then we say that C is orthogonally similar to A if there exists an orthogonal matrix P such that $C = P^T A P$.

Theorem 8.3.2 Two matrices are orthogonally similar if and only if there exist orthonormal bases with respect to which the matrices represent the same linear operator.

The Orthogonal Diagonalization Problem Given a square matrix A, does there exist an orthogonal matrix P for which P^TAP is a diagonal matrix, and if so, how does one find such a P? If such a matrix P exists, then A is said to be *orthogonally diagonalizable*, and P is said to *orthogonally diagonalize* A.

- A must be symmetric so that A is orthogonally diagonalizable.
- D=PTAP. A=PDPT.
- $A^T = PD^TP^T = A$ since $D^T = D$.

Theorem 8.3.3 An $n \times n$ matrix A is orthogonally diagonalizable if and only if there exists an orthonormal set of n eigenvectors of A.

- Proof: ->) Let P=[p_1,p_2,...,p_n] be the orthogonal matrix. Then {p_1,p_2,...,p_n} is an orthonormal basis and are eigenvectors of A.
- (<-): Given an orthonormal set of eigenvectors, we can form P. P diagonalizes A.

Theorem 8.3.4

- (a) A matrix is orthogonally diagonalizable if and only if it is symmetric.
- (b) If A is a symmetric matrix, then eigenvectors from different eigenspaces are orthogonal.
- Proof: (a) -> done
- (a) <-. (not prove.)
- (b) $I_1v_1.v_2 = (I_1v_1)^Tv_2 = (Av_1)^Tv_2 = v_1^TA^Tv_2 = v_1^TAv_2$
- = $v_1^T l_2 v_2 = l_2 v_1 . v_2$. Since l_1 is different from l_2 , this means $v_1 . v_2 = 0$.

A method of diagonalization

Orthogonally Diagonalizing an $n \times n$ Symmetric Matrix

- **Step 1.** Find a basis for each eigenspace of A.
- **Step 2.** Apply the Gram–Schmidt process to each of these bases to produce orthonormal bases for the eigenspaces.
- **Step 3.** Form the matrix $P = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$ whose columns are the vectors constructed in Step 2. The matrix P will orthogonally diagonalize A, and the eigenvalues on the diagonal of $D = P^T A P$ will be in the same order as their corresponding eigenvectors in P.
 - Example 1. From any symmetric matrix, we find eigenvalues and eigenvectors and this will work.

Spectral decompositions

- A symmetric. Orthogonally diagonalizable.
- P=[u_1,u_2,...,u_n] u_i eigenvector corr to l_i.
- \bullet D=P^TAP.
- Then A=PDP^T=

$$\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_n^T \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 u_1 & \lambda_2 u_2 & \cdots & \lambda_n u_n \end{bmatrix} \begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_n^T \end{bmatrix}$$

- $A=I_1u_1u_1^T+I_2u_2u_2^T+...+I_nu_nu_n^T$.
- This is called the spectral decomposition of A.
- u_iu_i^T is a projection to Span{u_i}.
- There are eigenspaces...
- If A is not symmetric, the eigenspaces are not necessarily orthogonal.
- Example 2:

Power of a diagonalizable matrices

- Suppose that A is diagonalizable.
- Then A=PDP-1.
- $A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1}$
- $A^k = PDP^{-1}PDP^{-1}...PDP^{-1}=PD^kP^{-1}$.
- If A is symmetric, and $A=I_1u_1u_1^T+...+I_nu_nu_n^T$.
 - $A^k=I_1^k u_1u_1^T+...+I_n^k u_nu_n^T$. (This follows by midle cancellations also.)
 - Example 3:

Cayley-Hamilton theorem

Theorem 8.3.5 (Cayley–Hamilton Theorem) Every square matrix satisfies its characteristic equation; that is, if A is an $n \times n$ matrix whose characteristic equation is

$$\lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0$$

then

$$A^{n} + c_{1}A^{n-1} + \dots + c_{n}I = 0 \tag{14}$$

We $A(-A^{n-1}/c_n-...-c_n-11/c_n)=1$. We can obtain the inverse of A.

Example 4.

Exponent of a matrix

Theorem 8.3.6 Suppose that A is an $n \times n$ diagonalizable matrix that is diagonalized by P and that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A corresponding to the successive column vectors of P. If f is a real-valued function whose Maclaurin series converges on some interval containing the eigenvalues of A, then

$$f(A) = P \begin{bmatrix} f(\lambda_1) & 0 & \cdots & 0 \\ 0 & f(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f(\lambda_n) \end{bmatrix} P^{-1}$$

$$(21)$$

• Example 5:

- A symmetric with a spectral decomposition:
- $A=I_1u_1u_1^T+I_2u_2u_2^T+...+I_nu_nu_n^T$.
- f(A)= $f(I_1)u_1u_1^T+f(I_2)u_2u_2^T+...+f(I_n)u_nu_n^T$.

Diagonalization and linear systems

- Ax=b. A diagonalizable
- \bullet P-1AP=D
- x=Py substiture
- APy=b, $P^{-1}APy=P^{-1}b$.
- Dy=P⁻¹b. This is easy to solve.
- Such algorithms are time saving once we know the diagonalizability and P.

The nondiagonalizable case

• $A = PSP^T$, S upper triangular matrix.

Theorem 8.3.7 (*Schur's Theorem*) If A is an $n \times n$ matrix with real entries and real eigenvalues, then there is an orthogonal matrix P such that P^TAP is an upper triangular matrix of the form

$$P^{T}AP = \begin{bmatrix} \lambda_{1} & \times & \times & \cdots & \times \\ 0 & \lambda_{2} & \times & \cdots & \times \\ 0 & 0 & \lambda_{3} & \cdots & \times \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}$$

$$(24)$$

in which $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of the matrix A repeated according to multiplicity.

 \bullet A=PHP^T.

Theorem 8.3.8 (*Hessenberg's Theorem*) Every square matrix with real entries is orthogonally similar to a matrix in upper Hessenberg form; that is, if A is an $n \times n$ matrix, then there is an orthogonal matrix P such that P^TAP is a matrix of the form

$$P^{T}AP = \begin{bmatrix} \times & \times & \cdots & \times & \times & \times \\ \times & \times & \cdots & \times & \times & \times \\ 0 & \times & \ddots & \times & \times & \times \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \times & \times & \times \\ 0 & 0 & \cdots & 0 & \times & \times \end{bmatrix}$$

$$(26)$$

- There are algorithmically different.
- Hessenberg->Schur->Eigenvalues...