8_6 Singular value decomposition

DIAGONALIZATION USING TWO ORTHOGONAL MATRICES

Diagonalizations

- A=PDP^T. A symmetric P orthogonal
- A=PHP^T Hessenberg A non-symmetric
- A=PSP^T Schur decomposition
- A=PJP⁻¹, A any J Jordan form, P invertible only. This is sensitive to round off errors.
- A=USV^T, U,V orthogonal, S diagonal with positive or zero entries in the diagonal.

Theorem 8.6.1 If A is an $n \times n$ matrix of rank k, then A can be factored as

$$A = U \Sigma V^{T}$$

where U and V are $n \times n$ orthogonal matrices and Σ is an $n \times n$ diagonal matrix whose main diagonal has k positive entries and n - k zeros.

- proof: A^TA is symmetric.
 - A^TA=VDV^T for D diagonal, V orthogonal.
 - The diagonal elements of D are eigenvalues of A^TA. The column vectors of V are eigenvectors of A^TA.
 - If x is an eigenvector of A^TA, then Ax.Ax=x.A^TAx=x.lx=l(x.x), I is nonnegative.
 - Rank A=rank A^TA=rank D. (Th. 7.5.8,8.2.3.)
 - We let V be arranged so that the corresponding eigenvalues are decreasing.
 - Thus I_1≥I_2≥...≥I_k>0, I_k+1=..=I_n=0.

- Consider {Av_1,Av_2,...,Av_n}
- Av_i.Av_j=v_i.A^TAv_j = v_i.l_jv_j = l_j(v_i.v_j) = 0 for i ≠j by the orthogonality of v is.
- ||Av_i||²=Av_i.Av_i=v_i.A^TAv_j=v_i.l_iv_i = |_i(v_i.v_i)=|_i.
- ||Av_i||=√ l_i.
- {Av_1,...,Av_k} the basis of the column space of A. (col rank A=rank A=k)
- We normalize to obtain u_1,...,u_k.
- u_j=Av_j/||Av_j|| = Av_j/√ |_j.
 Av_j=√ || ju_j
- Extend to an orthonormal basis u_1,...,u_n.
- Let U=[u_1,...,u_k,u_k+1,...,u_n]

- Let S be the diagonal matrix with diagonal entries √ I_1,√ I_2,..,√ I_k,0,..,0.
- Then US= [$\sqrt{1_1u_1}, \sqrt{1_2u_2}, ..., \sqrt{1_k}, 0, ..., 0$] =[Av_1,Av_2,...,Av_k, Av_k+1,...,Av_n]=AV.
- Thus, A=USV^T.

Theorem 8.6.2 (Singular Value Decomposition of a Square Matrix) If A is an $n \times n$ matrix of rank k, then A has a singular value decomposition $A = U \Sigma V^T$ in which:

- (a) $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ orthogonally diagonalizes $A^T A$.
- (b) The nonzero diagonal entries of Σ are

$$\sigma_1 = \sqrt{\lambda_1}, \, \sigma_2 = \sqrt{\lambda_2}, \, \dots, \, \sigma_k = \sqrt{\lambda_k}$$

where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the nonzero eigenvalues of A^TA corresponding to the column vectors of V.

- (c) The column vectors of V are ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k > 0$.
- (d) $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|} = \frac{1}{\sigma_i}A\mathbf{v}_i$ $(i = 1, 2, \dots, k)$
- (e) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthonormal basis for $\operatorname{col}(A)$.
- (f) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_n\}$ is an extension of $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ to an orthonormal basis for \mathbb{R}^n .

- Example 1.
- Singular value decomposition of symmetric matrices.
 - A symmetric.
 - A=PDP^T.
 - D may have negative eigenvalues.
 - Let S be the diagonal matrix with the absolute values of the diagonal entries of D arranged the right way.
 - Then A=PSV^T. We put some negative signs to the columns of V.
- Example 2.

Polar decompositions

Theorem 8.6.3 (*Polar Decomposition*) If A is an $n \times n$ matrix of rank k, then A can be factored as

$$A = PQ (9)$$

where P is an $n \times n$ positive semidefinite matrix of rank k, and Q is an $n \times n$ orthogonal matrix. Moreover, if A is invertible (rank n), then there is a factorization of form (9) in which P is positive definite.

- Proof: A=USV^T=(USU^{T)}(UV^T) =PQ
 - rank P=rankS=k.
 - A invertible -> k=n -> S positive definite -> P positive definite.
- Example 3.

Theorem 8.6.4 (Singular Value Decomposition of a General Matrix) If A is an $m \times n$ matrix of rank k, then A can be factored as

$$A = U\Sigma V^{T} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \mid \mathbf{u}_{k+1} & \cdots & \mathbf{u}_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 & | & & & \\ 0 & \sigma_{2} & \cdots & 0 & | & & & \\ \vdots & \vdots & \ddots & \vdots & | & & & & \\ 0 & 0 & \cdots & \sigma_{k} & | & o_{(m-k)\times(n-k)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k+1}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{bmatrix}$$

$$(12)$$

in which U, Σ , and V have sizes $m \times m$, $m \times n$, and $n \times n$, respectively, and in which:

- (a) $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ orthogonally diagonalizes $A^T A$.
- (b) The nonzero diagonal entries of Σ are $\sigma_1 = \sqrt{\lambda_1}$, $\sigma_2 = \sqrt{\lambda_2}$, ..., $\sigma_k = \sqrt{\lambda_k}$, where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the nonzero eigenvalues of $A^T A$ corresponding to the column vectors of V.
- (c) The column vectors of V are ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k > 0$.
- (d) $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|} = \frac{1}{\sigma_i}A\mathbf{v}_i$ $(i = 1, 2, \dots, k)$
- (e) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthonormal basis for $\operatorname{col}(A)$.
- (f) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_m\}$ is an extension of $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ to an orthonormal basis for R^m .

- u_1,...,u_k, the left singular vectors of A.
- v_1,...,v_k, the right singular vectors of
 A.
- Example 4.

Singular value decompositions and the fundamental spaces

Theorem 8.6.5 If A is an $m \times n$ matrix with rank k, and if $A = U \Sigma V^T$ is the singular value decomposition given in Formula (12), then:

- (a) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthonormal basis for $\operatorname{col}(A)$.
- (b) $\{\mathbf{u}_{k+1}, \dots, \mathbf{u}_m\}$ is an orthonormal basis for $\operatorname{col}(A)^{\perp} = \operatorname{null}(A^T)$.
- (c) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthonormal basis for row(A).
- (d) $\{\mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ is an orthonormal basis for $\operatorname{row}(A)^{\perp} = \operatorname{null}(A)$.
- Proof: (a) u_1,...,u_k. normalized from Av_is. Thus a basis of col(A).
- (b) col(A)^c has basis u_k+1,...,u_n

- (d): v_1,..,v_n orthonormal set of eigenvectors of A^TA.
 - v_k+1, ..., v_n corr to 0.
 - Thus v_k+1,..,v_n the orthonormal basis of null A^TA=nullA of dim n-k.
 - (d) proved.
- (c): v_1,..,v_k. are in null(A)^c=row(A).
 - row(A) has dimension k. Thus, v_1,..,v_k
 form an orthonormal basis of row(A).

Reduced singular value decompositions

- We can remove zero rows and zero columns from S.
- We also eliminate u_k+1,..u_n, v^T_k+1,...v^T_n.
- A=U_1^{mxk}S_1^{kxk}V_1^{kxn}.
- \bullet A=s_1u_1v_1^T+s_2u_2v_1^T+...+s_ku_k v_k^T.
- Example 5.

Data compression and image processing.

- We can omit small terms in A=s_1u_1v_1^T+s_2u_2v_1^T+...+s_ku_k v_k^T.
- This decrease the amount one has to store and get approximate images.

Singular value decomposition from the transformation point of view.

- \bullet T_A:Rⁿ->R^m
- Use basis B=[v_1,...,v_n] for Rⁿ.
- B'= $[u_1,...,u_n]$ for R^m .
- Then [T_A]_B,B'=S.
- Thus, in this coordinate, one collapses in v_k+1,...,v_n direction and multiply by s_1,...,s_k in u_1,...,u_k direction....

8_7 Pseudo-inverse

- A=U_1S_1V_1^T. mxk, kxk,nxn.
- If A is an invertible nxn-matrix, then S_1 is nxn and so U_1,V_1 are nxn.
- \bullet A⁻¹= V_1S_1⁻¹U_1^T.
- Suppose A is not nxn or invertible, then k<n.
- We define pseudo-inverse A+=V_1S_1-1U_1T eqn. (2)

• Example 1.

Theorem 8.7.1 If A is an $m \times n$ matrix with full column rank, then

$$A^+ = (A^T A)^{-1} A^T \tag{3}$$

- Proof: A=U_1S_1V_1^T.
 - $A^{T}A=(V_{1}S_{1}^{T}U_{1}^{T})(U_{1}S_{1}^{T}U_{1}^{T})$ = $V_{1}S_{1}^{2}V_{1}^{T}$.
 - A full rank -> A^TA invertible. V nxn-matrix.
 - $(A^TA)^{-1} = V_1S_1^{-2}V_1^{-1}$.
 - $(A^TA)^{-1}A^T = V_1S_1^{-2}V_1^T(V_1S_1^TU_1^T)$
 - = $V_1S_1^{-1}U_1^{-1} = A^+$

Properties of the pseudo-inverses.

Theorem 8.7.2 If A^+ is the pseudoinverse of an $m \times n$ matrix A, then:

- (a) $AA^{+}A = A$
- (b) $A^{+}AA^{+} = A^{+}$
- $(c) (AA^+)^T = AA^+$
- $(d) (A^{+}A)^{T} = A^{+}A$
- $(e) (A^T)^+ = (A^+)^T$
- $(f) A^{++} = A$
 - Proof: computations using (2) and
 - V_1^TV_1=I (kxk-matrix)
 - U^TU=I (kxk-matrix.)

Theorem 8.7.3 If $A^+ = V_1 \Sigma_1^{-1} U_1^T$ is the pseudoinverse of an $m \times n$ matrix A of rank k, and if the column vectors of U_1 and V_1 are $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$, respectively, then:

- (a) A^+y is in row(A) for every vector y in R^m .
- (b) $A^+\mathbf{u}_i = \frac{1}{\sigma_i}\mathbf{v}_i$ $(i = 1, 2, \dots, k)$
- (c) $A^+\mathbf{y} = \mathbf{0}$ for every vector \mathbf{y} in $\text{null}(A^T)$.
- (d) AA^+ is the orthogonal projection of R^m onto col(A).
- (e) A^+A is the orthogonal projection of R^n onto row(A).

Proof: (d)
$$AA^{+}= (U_1S_1V_1^{T})V_1S_1^{-1}U_1^{T}$$

= $U_1U_1^{T} = proj_span\{u_1,...,u_k\} = proj_col(A)$
(Theorem 8.6.5(a).
(e)) $A^{+}A = V_1S_1^{-1}U_1^{T} (U_1S_1V_1^{T}) = V_1V_1^{T}$
= $proj_span\{v_1,...,v_k\} = proj_row(A)$ (Theorem 8.6.5 (c))

Pseudo-inverses and the least squares

- If A has full column rank, then A^TA is invertible and Ax=b has the unique least squares solution
- $x=(A^TA)^{-1}A^Tb=A^+b$. (Theorem 7.8.3)
- If A does not have a full rank, by Theorem 7.8.3, there is a unique one in the row space of A. (minimum norm one.)

Theorem 8.7.4 If A is an $m \times n$ matrix, and **b** is any vector in \mathbb{R}^m , then

$$\mathbf{x} = A^{+}\mathbf{b}$$

is the least squares solution of $A\mathbf{x} = \mathbf{b}$ that has minimum norm.

Proof: $x=A^+b = V_1S_1U_1^Tb$ Thus, $(A^TA)A^+b = V_1S_1^2V_1^TV_1S_1^{-1}U_1^Tb$ $= V_1S_1^2S_1^{-1}U_1^Tb = V_1S_1U_1^Tb = A^Tb$. Thus x satisfies the least squares equation (10) p.395.

By Theorem 7.8.3, if x is in the row space of A, we are done. Theorem 8.7.3 implies that x is in row(A).

Condition numbers

- If some eigenvalues of A is zero or close to zero, then Ax=b is said to be ill conditioned.
- If the system is ill conditioned, then errors can become large.... A^TA has too many problems.