8_6 Singular value decomposition DIAGONALIZATION USING TWO ORTHOGONAL MATRICES

Diagonalizations

o A=PDP ${ }^{\top}$. A symmetric P orthogonal
o $A=P H P^{\top}$ Hessenberg A non-symmetric

- $\mathrm{A}=\mathrm{PSP}^{\mathrm{T}}$ Schur decomposition
o A=PJP-1, A any J Jordan form, P invertible only. This is sensitive to round off errors.
o $\mathrm{A}=\mathrm{USV}^{\top}, \mathrm{U}, \mathrm{V}$ orthogonal, S diagonal with positive or zero entries in the diagonal.

Theorem 8.6.1 If A is an $n \times n$ matrix of rank k, then A can be factored as

$$
A=U \Sigma V^{T}
$$

where U and V are $n \times n$ orthogonal matrices and Σ is an $n \times n$ diagonal matrix whose main diagonal has k positive entries and $n-k$ zeros.
o proof: $A^{\top} A$ is symmetric.

- $\mathrm{A}^{\top} \mathrm{A}=\mathrm{VDV}^{\top}$ for D diagonal, V orthogonal.
- The diagonal elements of D are eigenvalues of $\mathrm{A}^{\top} \mathrm{A}$. The column vectors of V are eigenvectors of $A^{\top} A$.
- If x is an eigenvector of $A^{\top} A$, then Ax. $A x=x \cdot A^{\top} A x=x .1 x=1(x . x)$, is nonnegative.
- Rank $A=r a n k A^{\top} A=r a n k$ D. (Th. 7.5.8,8.2.3.)
- We let V be arranged so that the corresponding eigenvalues are decreasing.
- Thus $\mid _1 \geq 1 _2 \geq . . \geq 1 _k>0,1 _k+1=. .=1 _n=0$.
- Consider \{Av_1,Av_2,...Av_n\}
- Av i.Avj=vii. $A^{\top} A v j=v i .1$ jvj $=$ I $-(\mathrm{v}, \mathrm{i} . \mathrm{v}-j)=0$ for $i \neq j$ by the orthogonality of v _is.
- ||Av_i| ${ }^{2}=A v v_{i} . A v _i=v_{-} . A^{\top} A v _j=v_{-} i . _i v v_{-} i$ = I_i(v_i.v_i)=I_i.
- \|Avi\| $\|=\sqrt{1}$ i.
- $\left\{A v _1, \ldots, A v _k\right\}$ the basis of the column space of A. (col rank $A=r a n k ~ A=k$)
- We normalize to obtain u_1,..., u_k.
- u j $=A v \mathrm{j} /||A v j||=A v j / \sqrt{1} \mathrm{I}$. $A v j=\sqrt{1} \dot{j u}{ }^{-}$
- Extend to an orthonormal basis u_1,..., u_n.
- Let U=[u_1,.., u_k,u_k+1,..., u_n]
- Let S be the diagonal matrix with diagonal entries $\sqrt{ }$ I_1, $\sqrt{ }$ I_2,..., $\sqrt{ }$ I_k,0,...,0.
 0,..,0] $=\left[A v _1, A v _2, . ., A v v_{-} k, A v _k+1, . ., A v _n\right]=A V$.
- Thus, $\mathrm{A}=\mathrm{USV}^{\top}$.

Theorem 8.6.2 (Singular Value Decomposition of a Square Matrix) If A is an $n \times n$ matrix of rank k, then A has a singular value decomposition $A=U \Sigma V^{T}$ in which:
(a) $V=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$ orthogonally diagonalizes $A^{T} A$.
(b) The nonzero diagonal entries of Σ are

$$
\sigma_{1}=\sqrt{\lambda_{1}}, \sigma_{2}=\sqrt{\lambda_{2}}, \ldots, \sigma_{k}=\sqrt{\lambda_{k}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the nonzero eigenvalues of $A^{T} A$ corresponding to the column vectors of V.
(c) The column vectors of V are ordered so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0$.
(d) $\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i} \quad(i=1,2, \ldots, k)$
(e) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis for $\operatorname{col}(A)$.
(f) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right\}$ is an extension of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ to an orthonormal basis for R^{n}.
o Example 1.
o Singular value decomposition of symmetric matrices.

- A symmetric.
- A=PDPT.
- D may have negative eigenvalues.
- Let S be the diagonal matrix with the absolute values of the diagonal entries of D arranged the right way.
- Then $A=P S V^{\top}$. We put some negative signs to the columns of V .
o Example 2.

Polar decompositions

Theorem 8.6.3 (Polar Decomposition) If A is an $n \times n$ matrix of rank k, then A can be factored as

$$
\begin{equation*}
A=P Q \tag{9}
\end{equation*}
$$

where P is an $n \times n$ positive semidefinite matrix of rank k, and Q is an $n \times n$ orthogonal matrix. Moreover, if A is invertible (rank n), then there is a factorization ofform (9) in which P is positive definite.

- Proof: $A=U S V^{\top}=\left(U S U^{\top}\right)\left(U^{\top}\right)=P Q$
- rank $P=r a n k S=k$.
- A invertible -> k=n -> S positive definite -> P positive definite.
- Example 3.

Theorem 8.6.4 (Singular Value Decomposition of a General Matrix) If A is an $m \times n$ matrix of rank k, then A can be factored as

$$
A=U \Sigma V^{T}=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \mid \mathbf{u}_{k+1} \tag{12}\\
\cdots & \cdots & \mathbf{u}_{m}
\end{array}\right]\left[\begin{array}{cccc:c}
\sigma_{1} & 0 & \cdots & 0 & \\
0 & \sigma_{2} & \cdots & 0 & 0_{k \times(n-k)} \\
\vdots & \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & \sigma_{k} & \\
\hdashline \hdashline & 0_{(m-k) \times k} & O_{(m-k) \times(n-k)}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\vdots \\
\\
\\
\\
\mathbf{v}_{k}^{T} \\
\mathbf{v}_{k+1}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right]
$$

in which U, Σ, and V have sizes $m \times m, m \times n$, and $n \times n$, respectively, and in which:
(a) $V=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$ orthogonally diagonalizes $A^{T} A$.
(b) The nonzero diagonal entries of Σ are $\sigma_{1}=\sqrt{\lambda_{1}}, \sigma_{2}=\sqrt{\lambda_{2}}, \ldots, \sigma_{k}=\sqrt{\lambda_{k}}$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the nonzero eigenvalues of $A^{T} A$ corresponding to the column vectors of V.
(c) The column vectors of V are ordered so that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0$.
(d) $\mathbf{u}_{i}=\frac{A \mathbf{v}_{i}}{\left\|A \mathbf{v}_{i}\right\|}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i} \quad(i=1,2, \ldots, k)$
(e) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis for $\operatorname{col}(A)$.
(f) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_{m}\right\}$ is an extension of $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ to an orthonormal basis for R^{m}.
o u_1, .., u_k, the left singular vectors of A.
o $v _1, \ldots, v _k$, the right singular vectors of A.

- Example 4.

Singular value decompositions and the fundamental spaces

Theorem 8.6.5 If A is an $m \times n$ matrix with rank k, and if $A=U \Sigma V^{T}$ is the singular value decomposition given in Formula (12), then:
(a) $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonormal basis for $\operatorname{col}(A)$.
(b) $\left\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{m}\right\}$ is an orthonormal basis for $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{T}\right)$.
(c) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthonormal basis for $\operatorname{row}(A)$.
(d) $\left\{\mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis for $\operatorname{row}(A)^{\perp}=\operatorname{null}(A)$.
o Proof: (a) u_1,..,u_k. normalized from Av_is. Thus a basis of col(A).
o (b) col(A)c has basis u_k+1,..,u_n
o (d): v_1,.., v_n orthonormal set of eigenvectors of $\mathrm{A}^{\top} \mathrm{A}$.

- v_k+1, .., v_n corr to 0 .
- Thus $v _k+1, . ., \mathrm{v} _n$ the orthonormal basis of null $A^{\top} A=n u l l \mid A$ of $\operatorname{dim} n-k$.
- (d) proved.
o (c): $v_{-} 1, . ., v _k$. are in null(A) ${ }^{\text {con }}=$ row(A).
- row(A) has dimension k. Thus, v_1,.., v_k form an orthonormal basis of row(A).

Reduced singular value decompositions

o We can remove zero rows and zero columns from S.
o We also eliminate $u _k+1, ., u _n$, $v^{\top} _k+1, \ldots v^{\top} _n$.
O $A=U_{-} 1^{\mathrm{mxk}} S_{-} 1^{\mathrm{kxk}} \mathrm{V}_{-} 1^{\mathrm{kxn}}$.
O $A=s _1 u _1 v _1^{\top}+s _2 u _2 v _1^{\top}+\ldots+s _k u _k$ v_k ${ }^{\top}$.
o Example 5.

Data compression and image

 processing.o We can omit small terms in
$\mathrm{A}=\mathrm{s} _1 \mathrm{u} _1 \mathrm{v} _1^{\top}+\mathrm{s}_{-} 2 u_{-} 2 \mathrm{v} 1^{\top}+\ldots+\mathrm{s}_{-} k u _k$ v_k ${ }^{\top}$.

- This decrease the amount one has to store and get approximate images.

Singular value decomposition from the transformation point of view.

o T_A: $R^{n}->R^{m}$
o Use basis $B=\left[v_{-} 1, \ldots, v_{n} n\right]$ for R^{n}.

- $B^{\prime}=\left[u _1, . ., u _n\right]$ for R^{m}.
o Then [T_A]_B, B'=S.
- Thus, in this coordinate, one collapses in $\mathrm{v} _\mathrm{k}+1, . ., \mathrm{v} _\mathrm{n}$ direction and multiply by s_1,..,s_k in u_1,..., u_k direction....

8_7 Pseudo-inverse

- A=U_1S_1V_1¹. mxk, kxk,nxn.
- If A is an invertible nxn-matrix, then S_1 is $n \times n$ and so $U_{-} 1, V_{-} 1$ are $n x n$.
- $\mathrm{A}^{-1}=\mathrm{V}_{-} 1 \mathrm{~S}$ _1 $^{1-1} \mathrm{U}^{1} 1^{\mathrm{T}}$.
- Suppose A is not nxn or invertible, then $\mathrm{k}<\mathrm{n}$.
- We define pseudo-inverse
$\mathrm{A}^{+}=\mathrm{V}$ _1S_1-1 $\mathrm{U}_{-} 1^{\top}$ eqn. (2)

o Example 1.

Theorem 8.7.1 If A is an $m \times n$ matrix with full column rank, then

$$
\begin{equation*}
A^{+}=\left(A^{T} A\right)^{-1} A^{T} \tag{3}
\end{equation*}
$$

o Proof: A=U_1S_1V_1 ${ }^{\top}$.

- $A^{\top} A=\left(V _1 S _1^{\top} U _1^{\top}\right)\left(U _1 S _1 V _1^{\top}\right)$

$$
=V_{-} 1 S _1^{2} \mathrm{~V} \text { - } 1^{\top} .
$$

- A full rank -> A^{\top} A invertible. V nxn-matrix.
- $\left(A^{\top} A\right)^{-1}=V_{-} 1 S_{-} 1^{-2} \mathrm{~V} 1^{\top} 1^{\top}$.
- $\left(A^{\top} A\right)^{-1} A^{\top}=V_{-} 1 S _1^{-2} V_{-} 1^{\top}\left(V_{-} 1 S _1^{\top} U _1^{\top}\right)$
- $=\mathrm{V}_{-} 1 \mathrm{~S}_{-1} 1^{-1} \mathrm{U}_{-} 1^{\top}=\mathrm{A}^{+}$

Properties of the pseudoinverses.

Theorem 8.7.2 If A^{+}is the pseudoinverse of an $m \times n$ matrix A, then:
(a) $A A^{+} A=A$
(b) $A^{+} A A^{+}=A^{+}$
(c) $\left(A A^{+}\right)^{T}=A A^{+}$
(d) $\left(A^{+} A\right)^{T}=A^{+} A$
(e) $\left(A^{T}\right)^{+}=\left(A^{+}\right)^{T}$
(f) $A^{++}=A$
o Proof: computations using (2) and

- V_1TV_1=l (kxk-matrix)
- UTU=I (kxk-matrix.)

Theorem 8.7.3 If $A^{+}=V_{1} \Sigma_{1}^{-1} U_{1}^{T}$ is the pseudoinverse of an $m \times n$ matrix A of rank k, and if the column vectors of U_{1} and V_{1} are $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$, respectively, then:
(a) $A^{+} \mathbf{y}$ is in $\operatorname{row}(A)$ for every vector \mathbf{y} in R^{m}.
(b) $A^{+} \mathbf{u}_{i}=\frac{1}{\sigma_{i}} \mathbf{v}_{i} \quad(i=1,2, \ldots, k)$
(c) $A^{+} \mathbf{y}=\mathbf{0}$ for every vector \mathbf{y} in $\operatorname{null}\left(A^{T}\right)$.
(d) $A A^{+}$is the orthogonal projection of R^{m} onto $\operatorname{col}(A)$.
(e) $A^{+} A$ is the orthogonal projection of R^{n} onto $\operatorname{row}(A)$.

Proof: (d) $A A^{+}=\left(U _1 S _1 V _1^{\top}\right) V _1 S _1^{-1} U _1^{\top}$
$=\mathrm{U}_{-} 1 \mathrm{U}_{-} 1^{\top}=$ proj_span\{u_1, .., u_k $\overline{\}}=$ proj_col(A)
(Theorem 8.6.5(a).
(e)) $A^{+} A=V _1 S _1^{-1} U_{-} 1^{\top}\left(U _1 S _1 V _1^{\top}\right)=V _1 V _1^{\top}$
$=$ proj_span\{v_1,.., v_k\}=proj_row(A) (Theorem 8.6.5 (c))

Pseudo-inverses and the least squares

- If A has full column rank, then $\mathrm{A}^{\top} \mathrm{A}$ is invertible and $A x=b$ has the unique least squares solution
o $\mathrm{x}=\left(\mathrm{A}^{\top} \mathrm{A}\right)^{-1} \mathrm{~A}^{\top} \mathrm{b}=\mathrm{A}^{+} \mathrm{b}$. (Theorem 7.8.3)
o If A does not have a full rank, by
Theorem 7.8.3, there is a unique one in the row space of A. (minimum norm one.)

Theorem 8.7.4 If A is an $m \times n$ matrix, and \mathbf{b} is any vector in R^{m}, then

$$
\mathbf{x}=A^{+} \mathbf{b}
$$

is the least squares solution of $A \mathbf{x}=\mathbf{b}$ that has minimum norm.

Proof: $\mathrm{x}=\mathrm{A}^{+} \mathrm{b}=\mathrm{V}$ _1S_1U_1${ }^{\top} \mathrm{b}$
Thus, $\left(A^{\top} A\right) A^{+} b=\bar{V} _1 \bar{S}_{-} 1^{2} V _1^{\top} V _1 S _1^{-1} U _1^{\top} \mathrm{b}$ $=V _1 S _1^{2} S _1^{-1} \mathrm{U} _1^{\top} b=V _1 \mathrm{~S} _1 \mathrm{U} _1^{\top} \mathrm{T}=\mathrm{A}^{\top} \mathrm{D}$.
Thus x satisfies the least squares equation (10) p. 395 .
By Theorem 7.8.3, if x is in the row space of A, we are done. Theorem 8.7.3 implies that x is in $\operatorname{row}(A)$.

Condition numbers

- If some eigenvalues of A is zero or close to zero, then $A x=b$ is said to be ill conditioned.
o If the system is ill conditioned, then errors can become large.... $\mathrm{A}^{\top} \mathrm{A}$ has too many problems.

