# 3.6. Matrices with special forms

Diagonal matrix, triangular matrix, symmetric and skew-symmetric matrices, AA<sup>T</sup>, Fixed points, inverting I-A

### **Diagonal matrices**

- A square matrix where non-diagonal entries are 0 is a diagonal matrix.
- d\_1, d\_2,... are real numbers (could be zero.) O, I diagonal matrices

$$egin{bmatrix} d_1 & 0 & \cdots & 0 \ 0 & d_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & d_n \end{bmatrix}$$

#### If every diagonal entry is not zero, then the matrix is invertible.

- The inverse is a diagonal matrix with diagonal entries 1/d\_1, 1/d\_2,..., 1/d\_n.
- D<sup>k</sup> for positive integer k is diagonal with

entries  $d_1^k, \ldots, d_n^k$ .

- See Example 1.
- Left multiplication of the matrix by a diagonal matrix. Right multiplication of the matrix by a diagonal matrix.

### **Triangular matrices**

- Given a square matrix.
- Lower triangular matrices: entries above the diagnonals a\_ij = 0 if i< j.</li>
- Upper triangular matrices:entries below the diagonals a\_ij=0 if i> j.
- A lower triangular matrix or an upper triangular matrix are triangular.
- Row echelon forms are upper triangular.



#### Theorem 3.6.1

- (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
- (b) A product of lower triangular matrices is lower triangular, and a product of upper triangular matrices is upper triangular.
- (c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.
- (d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular.
  - Proof: (b) A,B both upper triangular.
    (AB)\_ij = 0 if i>j.

$$\begin{bmatrix} 0 & \cdots & 0 & a_{ii} & a_{i(i+1)} & \cdots & a_{in} \end{bmatrix} k$$

- (c),(d) proved later
- See Example 4

$$\begin{bmatrix} \vdots \\ b_{jj} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

### Symmetric and skew-symmetric matrices

- A square matrix A is symmetric if A<sup>T</sup>=A or A\_ij=A\_ji.
- A is skew-symmetric if A<sup>T</sup>=-A or A\_ij=-A\_ji.

**Theorem 3.6.2** If A and B are symmetric matrices with the same size, and if k is any scalar, then:

- (a)  $A^T$  is symmetric.
- (b) A + B and A B are symmetric.
- (c) kA is symmetric.

**Theorem 3.6.3** The product of two symmetric matrices is symmetric if and only if the matrices commute.

 $(AB)^{T}=B^{T}A^{T}=BA$ . This equals AB iff AB=BA iff A and B commute.

- A,B skew-symmetric (AB)<sup>T</sup>=B<sup>T</sup>A<sup>T</sup>= (-B)(-A)=BA = AB iff A and B commute.
  - (AB is symmetric in fact.)
- The right conditions is BA=-AB (anticommute)

#### Invertible symmetric matrix.

- A symmetric matrix may not by invertible.
- Example: 2x2 matrix with all entries 1 is symmetric but not invertible.

**Theorem 3.6.4** If A is an invertible symmetric matrix, then  $A^{-1}$  is symmetric.

• Proof:  $(A^{-1})^T = (A^T)^{-1} = A^{-1}$  as A is symmetric. Thus  $A^{-1}$  is symmetric also.

#### AA<sup>T</sup>, A<sup>T</sup>A (A need not be square.)

- AA<sup>T</sup> is symmetric ((AA<sup>T</sup>)<sup>T</sup>=(A<sup>T</sup>)<sup>T</sup>A<sup>T</sup>=AA<sup>T</sup>.)
- Similary A<sup>T</sup>A is symmetric.
- If row vectors of A are r\_1,r\_2,..,r\_n, then the column vectors of  $A^T$  are r\_1<sup>T</sup>,r\_2<sup>T</sup>,...,r\_n<sup>T</sup>.

$$AA^{T} = \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{n} \end{bmatrix} \begin{bmatrix} r_{1}^{T} & r_{2}^{T} & \cdots & r_{n}^{T} \end{bmatrix} = \begin{bmatrix} r_{1}r_{1}^{T} & r_{1}r_{2}^{T} & \cdots & r_{1}r_{n}^{T} \\ r_{2}r_{1}^{T} & r_{2}r_{2}^{T} & \cdots & r_{2}r_{n}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n}r_{1}^{T} & r_{n}r_{2}^{T} & \cdots & r_{n}r_{n}^{T} \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} r_{1} \cdot r_{1} & r_{1} \cdot r_{2} & \cdots & r_{1} \cdot r_{n} \\ r_{2} \cdot r_{1} & r_{2} \cdot r_{2} & \cdots & r_{2} \cdot r_{n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n} \cdot r_{1} & r_{n} \cdot r_{2} & \cdots & r_{n} \cdot r_{n} \end{bmatrix}$$

**Theorem 3.6.5** If A is a square matrix, then the matrices A,  $AA^T$ , and  $A^TA$  are either all invertible or all singular.

If A is invertible, then so is A<sup>T</sup> and hence AA<sup>T</sup> and A<sup>T</sup>A are invertible. If A<sup>T</sup>A or AA<sup>T</sup> are invertible, the use 3.3.8 (b) to prove this.

### I-A.

- A fixed point x of A: Ax=x.
- We find x by solving (I-A)x=0.
- Fixed points can be useful.
- Example 6.
- Finding the inverse of I-A are often useful in applications. Suppose A<sup>k</sup>=0 for some positive k.

#### • Recall the polynomial algebra:

- $(1-x)(1+x+...+x^{k-1})=1-x^k$ .
- Plug A in to obtain (I-A)(I+A+...+A<sup>k-1</sup>)=I-A<sup>k</sup>=I.
- Thus (I-A)<sup>-1</sup>=I+A+…+A<sup>k-1</sup>.
- Examples: Strictly upper triangular or strictly lower triangular matrices...
- Those that are of form BAB<sup>-1</sup> for A strictly triangular.

## Using power series to obtain approximate inverse to I-A.

- For real x with |x| < 1, we have a formular  $(1-x)^{-1}=1+x+x^2+\ldots+x^n+\ldots$
- This converges absolutely.
- We plug in A to obtain (I-A)<sup>-1</sup>=I+A+A<sup>2</sup>+...+A<sup>n</sup>+...
- Again this will converge under the condition that sum of absolute values of each column (or each row) is less than 1.
- Basic reason A<sup>n</sup>-> O as n-> ∞.
- (see Leontief Input-Output Economic Model)

#### Ex Set 3.6.

- 1-6. Diagonal matrices
- 7-10 Triangular matrices
- 11-24 Symmetric matrices, inverse...
- 25,26 Inverse of I-A