3.7. Matrix Factorization

LU decomposition L: lower triangular U: upper triangular

Solving a linear system by factorizations

- We try to write A=LU where L is lower triangular and U upper triangular.
- The reason is that the calculations are simpler.
 - ∘ LUx=b
 - \circ Write Ux=y.
 - \circ Ly=b and solve for y.
 - \circ Solve for x in Ux=y
- Example 1.

Definition 3.7.1 A factorization of a square matrix A as A = LU, where L is lower triangular and U is upper triangular, is called an *LU-decomposition* or *LU-factorization* of A.

 If A can be reduced without using row exchanges, then we can obtain LU-decomposition.
 E_k....E_1A=R ref R is upper triangular. Let U=R.
 Thus A=E_1⁻¹E_2⁻¹...E_k⁻¹U.
 Then E_i⁻¹ is either diagonal or is lower triangular.

 \circ The product E_1⁻¹E_2⁻¹...E_k⁻¹ is lower triangular.

Theorem 3.7.2 If a square matrix A can be reduced to row echelon form by Gaussian elimination with no row interchanges, then A has an LU-decomposition.

- Steps to produce L and U.
 - Reduce A to ref U without row changes while recording multipliers for leading 1s and multipliers to make 0s below the leading 1s.
 - 2. Diagonal of L: place the reciprocals of the multipliers of the leading 1s.
 - 3. Below the diagonals of L: place the negatives of multipliers to make 0.
 - 4. Use L and U.

See Example 2.

The relation between Gaussian elimination and LUdecomposition

- Answer: They are equivalent for our matrices.
- Reason: As we do the row operations, LUdecomposition keeps track of operations.
- Gaussian elimination also keep track by changing b's.
- Ax=b is changed to Ux=y. Ly=b by multiplying L on both sides.
- That is [A|b] -> [U|y].
- See Example 3. (omit)

Matrix inversion by LUdecompositions

- A nxn matrix
- AB=I can be converted to
- A[x_1,...,x_n] = [e_1,e_2,...,e_n]
- Ax_1=e_1,Ax_2=e_2,...,Ax_n=e_n.
- We solve these by LU-decompositions.

LDU-decompositions

- We can write L=L'D where L' has only 1s in the diagonals.
- We can write A=LDU.
- See Example *.

Using permutation matrix.

- Sometimes, we can permute the rows of A so that LU-decomposition can happen.
- PA=U where P is a product of exchange elementary matrices.
- P is called a permutation matrix (it has only one 1 in each row or column)
- Acually P correspond to a 1-1 onto map f from {1,2,...,n} to itself. P_ij=1 if j=f(i) and 0 otherwise.

Computer cost to solve a linear system.

- Each operation +,-,/,* for floating numbers is a flop (floating point operation).
- We need to keep the number of flops down to minimize time.
- ▶ Today's PC : 10⁹ flops per second.
- Solve Ax=b by Gauss-Jordan method:
 - \circ 1. n flops to introduce 1 in the first row
 - 2. n mult and n add to introduce one 0 below 1.
 There are (n-1) rows: 2n(n-1) flops
 - \circ Total for column 1 is n+2n(n-1)=2n²-n.

- For next column, we replace n by n-1 and the total is 2(n-1)²-(n-1).
- The forward total for columns: 2n² - n+2(n-1)²-(n-1)+...+2-1 =2n³/3+n²/2-n/6.
- Now backward stage:
- Last column (n-1) multiplication (n-1) addition to make 0 the entries above the leading 1s. Total: 2(n-1).
- For column (n-1): 2(n-2).
- ▶ Backward Total 2(n-1)+2(n-2)+...+2(n-n)= n²-n.

Total. 2n³/3+3n²/2 -7n/6.

For large examples

- ► Forward flops is approximately 2n³/3.
- ▶ Backward flops is approximately n².
- See Example 4 and Table 3.7.1.
- Actually choosing algorithms really depends on experiences for the particular set of problems.

Ex. Set 3.7

- ▶ 1-4: Given LU-decompositions. Solve
- ▶ 5-14: LU-decompositions, LDU
- 15-16: Permutation matrices
- 17-20 PLU-decompositions

