3.3. Elementary matrices

A method to find A^{-1}

Elementary matrices

- Elementary operations:
- 1. Interchange two rows.
- 2. Multiply a row by a nonzero constant
- 3. Add a multiple of one row to another.
- Elementary matrix is a matrix that results from a single elementary row operation to l_n.

$$
\left[\begin{array}{cc}
1 & -3 \\
0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Theorem 3.3.1 If A is an $m \times n$ matrix, and if the elementary matrix E results by performing a certain row operation on the $m \times m$ identity matrix, then the product $E A$ is the matrix that results when the same row operation is performed on A.

- See Example 1.
- Each elementary operation has an elementary operation that reverses it.
- 1) multiply a row by c (nonzero)
- 1') multiply the same row by 1/c
- 2) interchange row i and row j. 2')=2)
- 3) Add c times a row i to row j.
- 3') Add -c times a row i to row j.
- An elementary matrix $\mathrm{E}=\mathrm{e}(\mathrm{I})$ for an operation e . Then $E^{\prime}=e^{\prime}(I)$ is the inverse of E.
- Proof: EE' $=e\left(E^{\prime}\right)=e\left(e^{\prime}(I)\right)=1$. $E^{\prime} E=e^{\prime}(E)=e^{\prime}(e(I))=I$.

Theorem 3.3.2 An elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem 3.3.3 If A is an $n \times n$ matrix, then the following statements are equivalent; that is, they are all true or all false.
(a) The reduced row echelon form of A is I_{n}.
(b) A is expressible as a product of elementary matrices.
(c) A is invertible.

- Proof: (a)->(b)->(c)->(a)
- (a)->(b).
- Ref of A is I_n. There is a sequence of elementary moves making A into I_n. Each operation is a multiplication by an elementary matrix.
- E_kE_\{k-1\}..E_2E_1A=I_n.
- $A=E _1^{-1} E _2^{-1} \ldots E _\{k-1\}^{-1} E_{-} k^{-1} I _n$
- (b)->(c)
- If A is a product of elementary matrices and each elementary matrix is invertible. Thus, so is A.
- (c)->(a) Suppose A is invertible.
- Let R be ref of A.
- Then E_k...E_2E_1A=R.
- Then R is invertible. By Theorem 3.2.4, either R has zero rows or $R=I _n$. The former implies R is not invertible.
- Thus R=l_n.

Row equivalence

- If a matrix B is obtained from A by applying a sequence of row operations. Then B is row equivalent to A. $A \cong B$.
- $A \cong B$ iff $B \cong A, A \cong B, B \cong C->A \cong C, A \cong A$.

A square matrix A is invertible if and only if it is row equivalent to the identity matrix of the same size.

Theorem 3.3.4 If A and B are square matrices of the same size, then the following are equivalent:
(a) A and B are row equivalent.
(b) There is an invertible matrix E such that $B=E A$.
(c) There is an invertible matrix F such that $A=F B$.

Inversion algorithm

The Inversion Algorithm To find the inverse of an invertible matrix A, find a sequence of elementary row operations that reduces A to I, and then perform the same sequence of operations on I to obtain A^{-1}.
, Proof: E_k...E_2E_1A=I. E_k...E_2E_1I=A-1
, Example 3.

Solving linear equations by matrix inversions

- If A is invertible, then $A x=b$ can be solved by $x=A^{-1} b$.

Theorem 3.3.5 If $A \mathbf{x}=\mathbf{b}$ is a linear system of n equations in n unknowns, and if the coefficient matrix A is invertible, then the system has a unique solution, namely $\mathbf{x}=A^{-1} \mathbf{b}$.

Theorem 3.3.6 If $A \mathbf{x}=\mathbf{0}$ is a homogeneous linear system of n equations in n unknowns, then the system has only the trivial solution if and only if the coefficient matrix A is invertible.

- Proof) <-) $A x=0 . x=A^{-1} 0=0$.
- ->) Let A^{\prime} be A augmented with 0 column.
- Then the ref for the augmented A^{\prime} is I augmented with $0 s$ since 0 s are the only solutions.
- augmented. Thus ref of $A=I$.

Theorem 3.3.8

(a) If A and B are square matrices such that $A B=I$ or $B A=I$, then A and B are both invertible, and each is the inverse of the other.
(b) If A and B are square matrices whose product $A B$ is invertible, then A and B are invertible.

- Proof: (a) Suppose $A B=1$.
- Then show $B x=0$ has a unique solution 0 . Use Thm 3.3.6.
$\circ A B x=0->\mid x=0$. Thus $x=0$. Done. B is invertible.
$\circ A B B^{-1}=B^{-1}$. Thus $A=B^{-1}$ and A is invertible.
- (b) $A B$ invertible. $I=(A B)(A B)^{-1}=A\left(B(A B)^{-1}\right)$. $I=(A B)^{-1}(A B)=\left((A B)^{-1} A\right) B$.

Theorem 3.3.9 If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) The reduced row echelon form of A is I_{n}.
(b) A is expressible as a product of elementary matrices.
(c) A is invertible.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b} in R^{n}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every vector \mathbf{b} in R^{n}.

- Proof: (a)(b)(c)(d) equivalent.
- We show (c)(e)(f) equivalent. (f)->(e)->(c)->(f).
- (f)->(e). Has a solution -> consistent.
- (e)->(c). $A x=e _1, A x=e _2, \ldots, A x=e _n$ are consistent.
- Let $\mathrm{c} _1, \mathrm{c} _2, \ldots, \mathrm{c} n$ be the respective solutions.
- Then $\mathrm{A}\left[\mathrm{c}-1, \mathrm{c} _2, \ldots, \mathrm{c}\right.$ n] $=1 _\mathrm{n}$. $\mathrm{C}=\left[\mathrm{c} _1, \mathrm{c}-2, \ldots, \mathrm{c} _\mathrm{n}\right]$ is an $\mathrm{nxn}-$ matrix. By Theorem 3.3.8, A is invertible.
- (c)->(f) Theorem 3.3.5.
- Solving multiple linear system with common coefficients.
- We can simplify by stacking bs.
- See Example 7.
- Consistency of linear systems
3.3.10 The Consistency Problem For a given matrix A, find all vectors \mathbf{b} for which the linear system $A \mathbf{x}=\mathbf{b}$ is consistent.
- Example 8.

Ex. Set. 3.3.

- 1-6 Recognizing elementary matrices, finding inverse. 7,8.
- 9-12 Find inverse
, 13-14,15-22 Inverse finding
- 29-34 Find consistency conditions.
- D5-D7... Interesting theoretical sides...

