3.4. Subspaces, Linear independence

Subspace

- A subspace is a set one can do scalar multiplication and addition and not leave the set.

Definition 3.4.1 A nonempty set of vectors in R^{n} is called a subspace of R^{n} if it is closed under scalar multiplication and addition.

1. A subspace is usually given by conditions.
2. We need to verify the conditions after scalar multiplications or additions.

- $\{O\}$ is a susbspace
, Every subspace contains O. Why?
- $W=\left\{(x, y)\right.$ in $\left.R^{2} \mid x>0, y>0\right\}$ is not a subspace. Why?
- $W=\left\{(x, y, 0)\right.$ in $\left.R^{3}\right\}$ is a subspace.
, W in R^{n} given by $x _2=1, x _3=-1$ a subspace?
- Let $\mathrm{v} _1, \mathrm{v}_{-} 2, \ldots, \mathrm{v} _$s is given in R^{n}.
- Let $W=\left\{c_{-} 1 v _1+c _2 v _2+\ldots+c_{-} s v _s \mid c_{-}\right.$i in R $\}$.
\circ That is W is the set of all linear combinations of given vectors v_1, v_2,..., v_s.
- Then W is a subspace.
- We write W=span\{v_1,v_2,...,v_s\}

Theorem 3.4.2 If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{s}$ are vectors in R^{n}, then the set of all linear combinations

$$
\begin{equation*}
\mathbf{x}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{s} \mathbf{v}_{s} \tag{3}
\end{equation*}
$$

is a subspace of R^{n}.

- Example 2: Span $\{\mathrm{O}\}=\{\mathrm{O}\}$.
- Example 3: $\operatorname{Span}\{(1,1,2,0)\}$ is a line.
- Example 4.
\circ A subspace in R^{1} : itself or $\{\mathrm{O}\}$.
- A subspace in R^{2} : itself, a line through $O,\{O\}$.
\circ A subspace in R^{3} : itself, a plane through O (Ax+By+C=O), a line through $O,\{O\}$
\circ A subspace in R^{n} : itself, a subspace $\approx R^{i},\{O\}$.

Solution space of a linear system

Theorem 3.4.3 If $A \mathbf{x}=\mathbf{0}$ is a homogeneous linear system with n unknowns, then its solution set is a subspace of R^{n}.

- Proof: $\mathrm{W}=\{x \mid \mathrm{Ax}=0\}$.
- If $x _0$ is a solution, then $k x _0$ is a solution.
- If $x _1$ and $x _2$ are solutions, then $x_{-} 1+x _2$ is a solution.
- Thus W is closed under scalar multiplications and additions. Thus W is a subspace.
- If one has an inhomogeous system, then the solution space is not a subspace.
- See Example *.

Theorem 3.4.4

(a) If A is a matrix with n columns, then the solution space of the homogeneous system $A \mathbf{x}=\mathbf{0}$ is all of R^{n} if and only if $A=0$.
(b) If A and B are matrices with n columns, then $A=B$ if and only if $A \mathbf{x}=B \mathbf{x}$ for every \mathbf{x} in R^{n}.
, Philosophy: A is determined by Ax's.

- Proof:
\circ (a) ->) $A=0 . A x=0$.
- <-) $A x=0$ for all $x . A e _1=0, A e _2=0, \ldots, A e _n=0$.
- A=Al=A[e_1,e_2,..,e_n]=[Ae_1,Ae_2,..,Ae_n]=O.
- Thus all columns of A are zero.
\circ (b) $A x=B x$ for all $x . A x-B x=O$. (A-B) $x=O$ for all $x . A-B=O$. $A=B$.

Linear independence

- How can we find a good way to describe a subspaces...
- Find equations... See as solutions spaces
- Find parameters... Write a vector as a linear combination of vectors in unique way for a fixed set of vectors. These should be the least in number.
- So we want to avoid "linearly dependent set of vectors": when some of the vectors in the set can be written as a linear combination of some others.
- In such cases, the number can be reduced by eliminating these.

Definition 3.4.5 A nonempty set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{s}\right\}$ in R^{n} is said to be linearly independent if the only scalars $c_{1}, c_{2}, \ldots, c_{s}$ that satisfy the equation

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{s} \mathbf{v}_{s}=\mathbf{0} \tag{9}
\end{equation*}
$$

are $c_{1}=0, c_{2}=0, \ldots, c_{s}=0$. If there are scalars, not all zero, that satisfy this equation, then the set is said to be linearly dependent.

- $\{O\}$ is linearly dependent. $\mathrm{cO}=\mathrm{O}$ for all c .
- $\{v\} \vee$ nonzero is linearly independent. cv=0 iff $c=0$.

Theorem 3.4.6 A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{s}\right\}$ in R^{n} with two or more vectors is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in S.

- Proof: ->) 0=c_1v_1+c_2v_2+...+c_sv_s.
- Not all c_is are zero. Say c_i is not.
- Then c_iv_i= c_1v_1+...+ c_(i-1)v_(i-1)+c_(i+1)v_(i+1)+...+c_sv_s.
- v_i= =(c_1/c_i)v-1+...+(c_(i-1)/c_i)v_(i-1)+ + (c_(i+1)/c_i)v_(i+1)+...+(c_s/c_i)v_s.
- <-) v_i= = d_1v_1+...+d_(i-1)v_(i-1)+ d_(i+1)v_(i+1)+...+d_sv_s.
- Thus, d_1v_1+...+d_(i-1)v_(i-1)+(-1)v_1+ d_(i+1)v_(i+1)+...+d_sv_s=0
- Example 10. two vectors in R^{n}.
- Example 11. three vectors in R^{n} is dependent if one is a linear combination of the other two.
- Thus, the three vectors lie in a common plane or a common plane or $\{\mathrm{O}\}$.
- Three vectors are linearly independent if there are no such planes, lines.

Linear independence and homogeneous linear systems

, Given v_1,v_2, ..,v_s, write $A=\left[v _1, v _2, \ldots, v _s\right]$.

- We write c_1v_1+c_2v_2+...+c_sv_s=0 as

$$
\left[v_{1}, v_{2}, \ldots, v_{s}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{s}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Theorem 3.4.7 A homogeneous linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution if and only if the column vectors of A are linearly independent.

- See Examples 12.

Theorem 3.4.8 A set with more than n vectors in R^{n} is linearly dependent.

Theorem 3.4.9 If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) The reduced row echelon form of A is I_{n}.
(b) A is expressible as a product of elementary matrices.
(c) A is invertible.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b} in R^{n}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every vector \mathbf{b} in R^{n}.
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independent.

Proof: (d)(g) equivalent by Th.3.4.7.
$(\mathrm{g})->(\mathrm{h}):(\mathrm{g})->(\mathrm{c})$. A^{\top} is invertible. Use (g) for A^{\top}. (h) follows
$(\mathrm{h})->(\mathrm{g}):(\mathrm{g})$ for A^{\top} holds. A^{\top} is invertible. -> A is invertible -> (g).

Ex. Set. 3.4.

- 1-8 Span problem
- 9,10 independence
- 13-16 span problem
- 17-22 linear independence
- 23-26 Subspaces

