3.4. Subspaces, Linear independence

Subspace

A subspace is a set one can do scalar multiplication and addition and not leave the set.

Definition 3.4.1 A nonempty set of vectors in \mathbb{R}^n is called a *subspace* of \mathbb{R}^n if it is closed under scalar multiplication and addition.

 A subspace is usually given by conditions.
 We need to verify the conditions after scalar multiplications or additions.

- {O} is a susbspace
- Every subspace contains O. Why?
- W ={(x,y) in $R^2|x>0$, y>0} is not a subspace. Why?
- ▶ W={(x,y,0) in R³} is a subspace.
- W in Rⁿ given by x_2=1,x_3=-1 a subspace?
- ▶ Let v_1, v_2,...,v_s is given in Rⁿ.
 - \circ Let W={c_1v_1+c_2v_2+...+c_sv_s| c_i in R}.
 - That is W is the set of all linear combinations of given vectors v_1, v_2,..., v_s.

 \circ Then W is a subspace.

We write W=span{v_1,v_2,...,v_s}

Theorem 3.4.2 If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s$ are vectors in \mathbb{R}^n , then the set of all linear combinations

(3)

 $\mathbf{x} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_s \mathbf{v}_s$

is a subspace of \mathbb{R}^n .

- Example 2: Span{O}={O}.
- Example 3: Span{(1,1,2,0)} is a line.
- Example 4.
 - \circ A subspace in R¹: itself or {O}.
 - \circ A subspace in R²: itself, a line through O, {O}.
 - \circ A subspace in R³: itself, a plane through O
 - (Ax+By+C=O), a line through O, {O}
 - \circ A subspace in Rⁿ: itself, a subspace ≈Rⁱ, {O}.

Solution space of a linear system

Theorem 3.4.3 If $A\mathbf{x} = \mathbf{0}$ is a homogeneous linear system with *n* unknowns, then its solution set is a subspace of \mathbb{R}^n .

• Proof: W = $\{x|Ax=0\}$.

- \circ If x_0 is a solution, then kx_0 is a solution.
- \circ If x_1 and x_2 are solutions, then x_1+x_2 is a solution.
- Thus W is closed under scalar multiplications and additions.
 Thus W is a subspace.
- If one has an inhomogeous system, then the solution space is not a subspace.
- See Example *.

Theorem 3.4.4

- (a) If A is a matrix with n columns, then the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$ is all of R^n if and only if A = 0.
- (b) If A and B are matrices with n columns, then A = B if and only if $A\mathbf{x} = B\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^n .
 - Philosophy: A is determined by Ax's.
 - Proof:
 - (a) ->) A=0. Ax=0.
 - o <-) Ax=0 for all x. Ae_1=0, Ae_2=0,...,Ae_n=0.</p>
 - A=AI=A[e_1,e_2,..,e_n]=[Ae_1,Ae_2,...,Ae_n]=O.
 - Thus all columns of A are zero.
 - (b) Ax=Bx for all x. Ax-Bx=O. (A-B)x=O for all x. A-B=O.
 A=B.

Linear independence

- How can we find a good way to describe a subspaces...
 - \circ Find equations... See as solutions spaces
 - Find parameters... Write a vector as a linear combination of vectors in unique way for a fixed set of vectors. These should be the least in number.
 - So we want to avoid "linearly dependent set of vectors": when some of the vectors in the set can be written as a linear combination of some others.
 - In such cases, the number can be reduced by eliminating these.

Definition 3.4.5 A nonempty set of vectors $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s}$ in \mathbb{R}^n is said to be *linearly independent* if the only scalars c_1, c_2, \dots, c_s that satisfy the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_s\mathbf{v}_s = \mathbf{0} \tag{9}$$

are $c_1 = 0, c_2 = 0, ..., c_s = 0$. If there are scalars, not all zero, that satisfy this equation, then the set is said to be *linearly dependent*.

- ▶ {O} is linearly dependent. cO=O for all c.
- {v} v nonzero is linearly independent. cv=0 iff c=0.

Theorem 3.4.6 A set $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_s}$ in \mathbb{R}^n with two or more vectors is linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in S.

- ▶ Example 10. two vectors in Rⁿ.
- Example 11. three vectors in Rⁿ is dependent if one is a linear combination of the other two.
 - Thus, the three vectors lie in a common plane or a common plane or {O}.
 - Three vectors are linearly independent if there are no such planes, lines.

Linear independence and homogeneous linear systems

- Given v_1,v_2,...,v_s, write A=[v_1,v_2,...,v_s].
- We write c_1v_1+c_2v_2+...+c_sv_s=0 as

$$\begin{bmatrix} v_1, v_2, \dots, v_s \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Theorem 3.4.7 A homogeneous linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution if and only if the column vectors of A are linearly independent.

Theorem 3.4.8 A set with more than n vectors in \mathbb{R}^n is linearly dependent.

Theorem 3.4.9 If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (g) The column vectors of A are linearly independent.
- (*h*) The row vectors of A are linearly independent.

Proof: (d)(g) equivalent by Th.3.4.7. (g)->(h): (g)->(c). A^{T} is invertible. Use (g) for A^{T} . (h) follows (h)->(g): (g) for A^{T} holds. A^{T} is invertible. -> A is invertible -> (g).

Ex. Set. 3.4.

- 1-8 Span problem
- 9,10 independence
- 13-16 span problem
- 17-22 linear independence
- > 23-26 Subspaces

