3.5. The geometry of linear systems

Solutions for inhomogeneous systems.

Consistency
Geometric interpretations

Translated subspaces

- W is a subspace.
- $x_0+W=\{v=x_0+w|w \text{ is in } W\}$
- This is not a subspace in general but is called an affine subspace (linear manifold, flat).
- For example x_0+span{v_0,v_1,...,v_s}
 ={v=x_0+c_0v_1+...+c_sv_s}
- y=1 in R². $\{(x,1)|x$ in R $\}=(0,1)+\{(x,0)|x$ in R $\}=(0,1)$
- Ax+By+Cz=D in R³ translated from Ax+By+Cz=0 since they are parallel.

The solution space of Ax=b and that of Ax=0

- \rightarrow W={x|Ax=b}, W_O={x|Ax=O}
- Let x be in W. Take one x_0 in W. Then x-x_0 is in W O.
 - \circ A(x-x_0)=Ax-Ax_0=b-b=0.
- Given an element x in W_O. x+x_0 is in W.
- $A(x+x_0)=Ax+Ax_0=O+b=b.$
- ▶ Thus, W=x_0+W_O.

Theorem 3.5.1 If $A\mathbf{x} = \mathbf{b}$ is a consistent nonhomogeneous linear system, and if W is the solution space of the associated homogeneous system $A\mathbf{x} = \mathbf{0}$, then the solution set of $A\mathbf{x} = \mathbf{b}$ is the translated subspace $\mathbf{x}_0 + W$, where \mathbf{x}_0 is any solution of the nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ (Figure 3.5.1).

- \rightarrow W ={(x,y)|x+y=1} is obtained from
- $V = \{(x,y)|x+y=0\}$ adding (1,0) in W.
- W={(x,y,z)|Ax+By+Cz=D} is obtained from W_0={(x,y,z)|Ax+By+Cz=O} by a translation by (x_0,y_0,z_0) for any point of W.
- W ={(x,y,z)| x+y+z=1, x-y=0 } \circ ={(s+1/2,1/2,s)|s in R}

$$\begin{vmatrix} s + 1/2 \\ 1/2 \\ s \end{vmatrix} = \begin{vmatrix} 1/2 \\ 1/2 \\ 0 \end{vmatrix} + s \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$$

 Here (1/2,1/2,0) is in W and {s(1,0,1)} are solutions of the homogeneous system. Solution to Ax=b can be written as x=x_h+x_0 where x_0 is a particular solution and x_h is a homogeneous solution.

Theorem 3.5.2 A general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding a particular solution of $A\mathbf{x} = \mathbf{b}$ to a general solution of $A\mathbf{x} = \mathbf{0}$.

Theorem 3.5.3 If A is an $m \times n$ matrix, then the following statements are equivalent.

- (a) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (b) $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b} in R^m (i.e., is inconsistent or has a unique solution).

Theorem 3.5.4 A nonhomogeneous linear system with more unknowns than equations is either inconsistent or has infinitely many solutions.

Consistency of a linear equation.

Ax=b can be written as
 x_1v_1+x_2v_2+...+x_nv_n=b.

Theorem 3.5.5 A linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

- This can be used to tell whether a certain vector can be written as a linear combination of some other vectors
- Example 2.

Hyperplanes

- a_1x_1+a_2x_2+...+a_nx_n=b in Rⁿ. (a_i not all zero)
- ▶ The set of points (x_1,x_2,...,x_n) satisfying the equation is said to be a hyperplane.
- b=0 if and only if the hyperplane passes O.
- We can rewrite a.x=b where a=(a_1,...,a_n) and x=(x_1,...,x_n).
- A hyperplane with normal a.
- a.x=0. An orthogonal complement of a.
- Example 3.

Geometric interpretations of solution spaces.

- a_11 x_1+a_12 x_2+...+a_1n x_n=b_1
- a_21 x_1+a_22 x_2+...+a_2n x_n=b_2
-
- a_m1 x_1+a_m2 x_2+...+a_mn x_n=b_m
- ▶ This can be written: a_1.x=0, a_2.x=0,...,a_m.x=0.

Theorem 3.5.6 If A is an $m \times n$ matrix, then the solution space of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ consists of all vectors in R^n that are orthogonal to every row vector of A.

See Example 4

Look ahead

- The set of solutions of a system of linear equation can be solved by Gauss-Jordan method.
- The result is the set W of vectors of form x_0+t_1v_1+...+t_sv_s where t_is are free variables.
- We show that {v_1,v_2,...,v_n} is linearly independent later.
- Thus W = x_0+W_0. W is an affine subspace of dimension s.

Ex. Set 3.5.

- ▶ 1-4 solving
- ▶ 5-8 linear combinations
- > 7-10 span
- ▶ 11-20 orthogonality