3.5. The geometry of linear systems

Solutions for inhomogeneous systems.
Consistency
Geometric interpretations

Translated subspaces

- W is a subspace.
- $x _0+W=\left\{v=x _0+w \mid w\right.$ is in $\left.W\right\}$
- This is not a subspace in general but is called an affine subspace (linear manifold, flat).
, For example $x _0+s p a n\left\{v _0, v _1, \ldots, v _s\right\}$ $=\left\{v=x _0+c _0 v _1+\ldots+c _s v _s\right\}$
- $y=1$ in $R^{2} .\{(x, 1) \mid x$ in $R\}=(0,1)+\{(x, 0) \mid x$ in $R\}$
- $A x+B y+C z=D$ in R^{3} translated from $A x+B y+C z=0$ since they are parallel.

The solution space of $A x=b$ and that of $A x=0$

- $W=\{x \mid A x=b\}, W _O=\{x \mid A x=O\}$
- Let x be in W. Take one $x _0$ in W. Then $x-x _0$ is in W_O.
- A(x-x_0)=Ax-Ax_0=b-b=0.
- Given an element x in W_O. $x+x _0$ is in W.
- $A\left(x+x _0\right)=A x+A x _0=O+b=b$.
- Thus, W=x_0+W_O.

Theorem 3.5.1 If $A \mathbf{x}=\mathbf{b}$ is a consistent nonhomogeneous linear system, and if W is the solution space of the associated homogeneous system $A \mathbf{x}=\mathbf{0}$, then the solution set of $A \mathbf{x}=\mathbf{b}$ is the translated subspace $\mathbf{x}_{0}+W$, where \mathbf{x}_{0} is any solution of the nonhomogeneous system $A \mathbf{x}=\mathbf{b}$ (Figure 3.5.1).

- $W=\{(x, y) \mid x+y=1\}$ is obtained from
- W_0 $=\{(x, y) \mid x+y=0\}$ adding $(1,0)$ in W.
- $W=\{(x, y, z) \mid A x+B y+C z=D\}$ is obtained from W_ $0=\{(x, y, z) \mid A x+B y+C z=O\}$ by a translation by (x_0,y_0,z_0) for any point of W.
- $W=\{(x, y, z) \mid x+y+z=1, x-y=0\}$
$0=\{(\mathrm{s}+1 / 2,1 / 2, \mathrm{~s}) \mathrm{s}$ in R$\}$
$0=\left[\begin{array}{c}s+1 / 2 \\ 1 / 2 \\ s\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right]+s\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
- Here $(1 / 2,1 / 2,0)$ is in W and $\{s(1,0,1)\}$ are solutions of the homogeneous system.
- Solution to $A x=b$ can be written as $\mathrm{x}=\mathrm{x} _\mathrm{h}+\mathrm{x} _0$ where $\mathrm{x} _0$ is a particular solution and $x _h$ is a homogeneous solution.

Theorem 3.5.2 A general solution of a consistent linear system $A \mathbf{x}=\mathbf{b}$ can be obtained by adding a particular solution of $A \mathbf{x}=\mathbf{b}$ to a general solution of $A \mathbf{x}=\mathbf{0}$.

Theorem 3.5.3 If A is an $m \times n$ matrix, then the following statements are equivalent.
(a) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(b) $A \mathbf{x}=\mathbf{b}$ has at most one solution for every \mathbf{b} in R^{m} (i.e., is inconsistent or has a unique solution).

Theorem 3.5.4 A nonhomogeneous linear system with more unknowns than equations is either inconsistent or has infinitely many solutions.

Consistency of a linear equation.

- $A x=b$ can be written as
x_1v_1+x_2v_2+...+x_nv_n=b.

Theorem 3.5.5 A linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

- This can be used to tell whether a certain vector can be written as a linear combination of some other vectors
- Example 2.

Hyperplanes

- $a_{-} 1 x _1+a_{-} 2 x _2+. . .+a_{-} n x _n=b$ in R^{n}. (a_i not all zero)
- The set of points ($x _1, x _2, \ldots, x _n$) satisfying the equation is said to be a hyperplane.
- $b=0$ if and only if the hyperplane passes O .
- We can rewrite $a . x=b$ where $a=\left(a _1, \ldots, a _n\right)$ and $x=\left(x _1, . ., x _n\right)$.
- A hyperplane with normal a.
- a.x=0. An orthogonal complement of a.
- Example 3.

Geometric interpretations of solution spaces.

- $a_{-} 11 x _1+a _12 x _2+\ldots+a _1 n x _n=b _1$
, a_21 x_1+a_22x_2+...+a_2n x_n=b_2
- a_m1 x_1+a_m2 x_2+...+a_mn x_n=b_m
- This can be written: a_1.x=0, a_2.x=0,...,a_m. $x=0$.

Theorem 3.5.6 If A is an $m \times n$ matrix, then the solution space of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ consists of all vectors in R^{n} that are orthogonal to every row vector of A.

- See Example 4

Look ahead

- The set of solutions of a system of linear equation can be solved by Gauss-Jordan method.
- The result is the set W of vectors of form x_0+t_1v_1+...tt_sv_s where t is are free variables.
- We show that $\left\{\mathrm{v} _1, \mathrm{v} _2, \ldots, \mathrm{v} _\mathrm{n}\right\}$ is linearly independent later.
- Thus $\mathrm{W}=\mathrm{x} _0+\mathrm{W} _0 . \mathrm{W}$ is an affine subspace of dimension s .

Ex. Set 3.5.

- 1-4 solving
- 5-8 linear combinations
- 7-10 span
- 11-20 orthogonality

