Introduction to Linear algebra

Summer 2010

Outline of the course

- The informations are all in math.kaist.ac.kr/~schoi/sumlin2010.htm.
- Basic purpose is for you to understand how to compute in linear algebra.
- One should progress aquiring many abstract notions through concrete computations.
- We can also see many applications.
- Ch 1: vectors
- Ch 2: System of linear equations.
- Ch 3: Matrices
- Operations on matrices
- Find inverses
- Factorizations LU-decompositions
- Ch4: Determinants
- Cofactor expansion- how to compute
- Properties - how to use
- Cramer's rule
- Ch 5.3: Gauss-Seidel and Jacobi iterations. (mid term)
- Ch 6: Linear transformations (abstract)
- Matrices as linear transformations
- Geometry
- Kernel, range
- Composition, invertibility
- Ch 7: Dimension and structure (abstract)
- Basis and dimension
- Dimension theorem, rank
- Best approximation, QR-decomposition

- Ch 8: Diagonalization

- Matrix representation of linear transformations
- Similarity, diagonalizability
- Orthogonal diagonalizability
- Quadratic forms
- Singular value decompositions
- The pseudo-inverse

Vectors

- Vectors are abstract notions: standing for direction and the size in the Euclidean space:
- A vector have an initial point and the terminal point.
- displacement of position, velocity(speed+direction) =change of displacement per unit time, forces vector (amount of force+direction)= change of velocity per unit time.
- Free vectors: like forces without origin
- Bound vectors: like displacement with a given origin.

Vector additions

- Parallelogram rule: position the initial points of two vectors at a given point. Then form the two vectors to be sides of a parallelogram. Take the diagonal vector.
- Triangle rule: The second vector is at the final point of a first vector. Take the displacement of the terminal point of the second vector from the initial point of the first vector.
- http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=51

There are many more such programs...

- Vector addition viewed as translations or as displacements.
- Example:
- displacement: Daejeon is at northwest of Pusan by 300 km . Seoul is at north of Daejeon by 200km. Seoul is 500km from Pusan in north north west direction.
- Velocity: A ship going in 5 km per hour to east (as seen by a shipmate) meeting a southerly wind of 5 km per hour.
- Force: An Egyptian slave pulling a cart driven by an ox.

Scalar multiplications

- -V is the vector in the opposite direction to V of the same length.
- $\mathrm{V}-\mathrm{W}=\mathrm{V}+(-\mathrm{W})$.
- Scalar multiplications:
- A real number k (called scalar).
- For $\mathrm{k}>0, \mathrm{kV}$ is the vector in the same direction of the length k times that of V .
- For $\mathrm{k}<0, \mathrm{kV}$ is the vector in the opposite direction of length -k times that of V .
- $-\mathrm{V}=(-1) \mathrm{V}$.

Vectors in coordinates

- The notion of vectors exists without coordinates. But the computations of vector addition is hard.
- A coordinate system on (Euclidean) 2-space is a two perpendicular axes: i.e. a line with directions. The point is given a coordinate by perpendicularly projecting to the axis.
- This introduced by Descartes, a revolutionary idea at the time. Turning geometry into algebra. Hence the name the Cartesian plane. This was used by Newton in solving the tangent problem...
- A vector in 2-space is described by two ordered number (a,b).
- a is obtained by vertical projection to the x -axis.
- b is obtained by horizontal projection to the y-axis.
- A point P <-> (a, b)
- $P(a, b) O(0,0)$
- x-axis $(x, 0), y$-axis $(0, y)$

A rectilinear coordinate system

 in
3-space

- In 3-dimensional Euclidean space, we have mutually perpendicular 3-axis: x-axis, y-axis, z-axis.
- The three axis meet at the origin 0 .
- The right handed system, z-axis: head, x-axis: the right arm, y-axis: the left arm.
- The left handed system, z-axis: head, x-axis: the left arm, y-axis: the right arm.
- Or you can use the right hand. Z-axis: the thumb, finger start: x-axis, finger end: y-axis.
- A point P <-> (a,b,c), $P(a, b, c)$
- a is obtained by the projection to the x-axis, b is obtained by the projection to the y-axis, and c by the projection to the z-axis.
- Now, vector additions, scalar multiplications are easy:
- $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$.
- $k(a, b)=(k a, k b)$.
- $(a, b, c)+\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a+a, b+b^{\prime}, c+c^{\prime}\right)$
- $k(a, b, c)=(k a, k b, k c)$.
- These are verified by addition rules (triangle rules in particular.) Such a verification process can be a hard one for one to grasp.
- The displacement between P, Q is

$$
\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}
$$

- In coordinates $(x, y)-\left(x^{\prime}, y^{\prime}\right)=\left(x-x^{\prime}, y-y^{\prime}\right)$ and (x, y, z) - ($\left.x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x-x^{\prime}, y-y^{\prime}, z-z^{\prime}\right)$
- Lesson: Any vector operations can be done better in coordinate-wise addition, multiplications.

Higher-dimensional spaces

- We saw that 2-space can be coordinatized to be a set of pairs or ordered sets of two real numbers.
- A 3-space correspond to a set of triples of real numbers.
- We define the n-space as something that can be coordinatized by a set of n-tuples of real numbers, i.e., an ordered sequence $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- The set is denoted by R^{n}. This is said to be an n space.
, R^{1}, R^{2}, R^{3}, visible spaces
- R^{4}, R^{5}, \ldots. Higher-dimensional spaces.
- Actually, higher-dimensional spaces are useful.
- Graphics (x,y,h,s,b) (x,y) coordinates, h hue, s saturation, b brightness
- 4-dimensional space can be drawn in 3-space by coloring differently.
, Economic analysis: economic indicators (GDP, KOSPI, KOSDAK, Export, Import, retail, inflation rate, oil price). All these coordinates are relevant to economic analysis to predict something else.

n-vector addition and scalar multiplications

- Definition:
- $\mathrm{v}+\mathrm{w}=\left(\mathrm{v}_{1}+\mathrm{w}_{1}, \mathrm{v}_{2}+\mathrm{w}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}+\mathrm{w}_{\mathrm{n}}\right)$
- $k v=\left(k v_{1}, k v_{2}, \ldots, k v_{n}\right)$
- $-v=\left(-v_{1}, k-v_{2}, \ldots,-v_{n}\right)$
- $w-v=w+(-v)=\left(v_{1}-w_{1}, v_{2}-w_{2}, \ldots, v_{n}-w_{n}\right)$
, Theorem: Laws
- $u+v=v+u,(u+v)+w=u+(v+w), u+0=0+u=u$,
- $u+(-u)=0,(k+l) u=k u+l u, k(u+v)=k u+k v$,
- $k(l u)=(k l) u=l(k u), 1 u=u, 0 v=0, k O=0,(-1) v=-v$.
- This needs to be verified.
- Two vectors are parallel or collinear if one vector is a scalar multiple of the other vector.
- Two vectors are in the same direction if one is a positive scalar multiple of the other vector.
- $(5,5,10),(1,1,2)$
- Two vectors are in the opposite direction if one is a negative scalar multiple of the other vector.
。 $(2,2,2),(-1,-1,-1)$

Linear combinations

- A vector w in R^{n} is a linear combination of the vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ if
。 $\mathrm{w}=\mathrm{c}_{1} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}+\ldots \mathrm{c}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$
- $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{n}}$ are coefficients (may not be unique).
- $(1,1,2,1)=1(1,0,0,0)+1(0,1,0,0)+2(0,0,1,0)+$ $1(0,0,0,1)$
- $(3,4)=2(1,1)+2(0,1)+1(1,0)=(1,1)+3(0,1)+2(1,0)$

RGB color model

- $r=(1,0,0)$ red, $b=(0,1,0)$ blue, $g=(0,0,1)$ green.
- Each point of the screen has three points to be lit by an electron.
- The RGB-space is all the linear combinations of all these vectors. That is, some of these are lit at the same time. (RGB-color cube)
- $c=c r+d b+e g, c, d, b$ in $\{0,1\}$ or in $[0,1]$.
- These can create most colors.
- See Figure 1.1.19.

matrix notation for vectors

- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ as a column vector
- i.e., nx1-vector
- This is more standard
- Sometimes as a row vector
$\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, i.e., $1 \times n$-vector

matrices

- A matrix has m-rows and n-columns.
- Each position is meaningful.
- A row vector is a one row -> make it into a $1 \times n-$ matrix.
- A column vector is a one column -> make it into a nx1-matrix.

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 2 \\
1 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

matrices and graphs

- A graph is a set of vertices and segments connecting two.
- Directed graph is a graph with directions on segments.
- A segment may have two directions: two-way connection. Otherwise it is a one-way connection.
- An adjacency matrix is given by letting (i,j)-position be 1 if there is an edge directed from i to j.
- There can be no $2 \mathrm{~s} .$.
- See Figure 1.1.20.
- Conversely, given a matrix with 0 and 1 s only, we can find a graph. (perhaps not on euclidean plane.)

