1.2.Dot Products, Orthogonality

lengths

- Length, norm, magnitude of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$ is $\|v\|=\left(v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}\right)^{1 / 2}$.
- Examples $v=(1,1, \ldots, 1)\|v\|=n^{1 / 2}$.
- Unit vectors $\mathrm{u}=\mathrm{v} /\|\mathrm{v}\|$ corresponds to directions.
- Standard unit vectors
- $i=(1,0), j=(0,1)$ in R^{2}
$\circ \mathrm{i}=(1,0,0), j=(0,1,0), k=(0,0,1)$ in R^{3}
- $e_{1}=(1,0, . ., 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)$ in R^{n}.
- $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)=v_{1} e_{1}+v_{2} e_{2}+\ldots+v_{n} e_{n}$.
- This is a unique expression.
- Distances when given position vectors:
- $D\left(P _1, P _2\right)=\left\|P _1 P _2\right\|$ $=\left(\left(x _2-x _1\right)^{2}+\left(y _2-y _1\right)^{2}\right)^{1 / 2}$ in 2 -space.
- In 3-space

$$
\begin{aligned}
& d\left(P _1, P _2\right)=\left\|P _2-P _1\right\| \\
& =\left(\left(x _2-x _1\right)^{2}+\left(y _2-y _1\right)^{2}+\left(z _2-z _1\right)^{2}\right)^{1 / 2} \text { in 2-space. }
\end{aligned}
$$

- In n-space u=(u_1,u_2,..., u_n), v=(v_1,v_2,...v_n),

Then $d(u, v)=\left(\left(u _1-v _1\right)^{2}+\left(u _2-v _2\right)^{2}+\ldots+\left(u _n-v _n\right)^{2}\right)^{1 / 2}$.

- Theorem. Two position vectors u, v in R^{n}. $\circ d(u, v) \geq 0, d(u, v)=d(v, u), d(u, v)=0$ if and only if $u=v$.
- Proof: Use the formula.
- We now introduce dot product. Given two vectors, the dot product gives you a real number.
- The dot product generalizes length and angle and is useful to compute many quantities. In fact, it is more fundamental than angles. Given

$$
\begin{aligned}
& u=\left(u _1, u _2, \ldots, u _n\right), v=\left(v _1, v _2, \ldots, v _n\right), \\
& u \cdot v=u _1 v _1+u _2 v _2+\ldots+u _n v _n .
\end{aligned}
$$

Properties of dot products

- $\|v\|=(v \bullet v)^{1 / 2}$.
- Theorem 1.2.7
- u•v=v•u, Symmetry
$\circ u \cdot(v+w)=u \cdot v+u \cdot w$. distributivity
$\circ \mathrm{k}(\mathrm{u} \cdot \mathrm{v})=(\mathrm{ku}) \cdot v$ homogenous
$\circ v \cdot v \geq 0$, and $v \cdot v=0$ if and only if $v=0$. positivity
- Theorem 1.2.8.
- $0 \cdot v=\mathrm{v} \cdot 0=0$
$\circ(u+v) \cdot w=u \cdot w+v \cdot w$
$\circ u \cdot(v-w)=u \cdot v-u \cdot w,(u-v) \cdot w=u \cdot w-v \cdot w$
- $k(u \cdot v)=u \bullet(k v)$
- Theorems 1.2.6, 1.2.7 gives us a means to compute as one does with real numbers. (See board.)
- Theorem 1.2.8:u, v nonzero vectors in $\mathrm{R}^{2}, \mathrm{R}^{3}$. If θ is an angle between u and v, then $\cos \theta=u \cdot v /(||u||| | v| |)$ or $\theta=\cos ^{-1}(u \cdot v /\|u\|\|| | v\|)$.
- Proof: Use cosine law
- \|v-u $\left\|^{2}=\right\| u\left\|^{2}+\right\| v\left\|^{2}-2\right\| u\|\|\|v\| \cos \theta$.
- Now $\|v-u\|^{2}=(v-u) \cdot(v-u)=(v-u) \bullet v-(v-u) \cdot u$ $=v \cdot v-u \cdot v-v \bullet u+u \cdot u=\|v\|^{2}-2 u \cdot v+\|u\|^{2}$.
- \|vv| ${ }^{2}-2 u \cdot v+\left|\left|u\left\|^{2}=\right\| u\left\|^{2}+\right\| v\left\|^{2}-2\right\| u\| \|\right| v \| \cos \theta\right.$.
\circ We simplify to get above.
- We consider θ to be in $[0, \pi]$ interval.
- Orthogonality.
- $u \cdot v=0$ iff $\cos \theta=0$ iff $\theta=\pi / 2$.
- Two nonzero vectors in 2- or 3-spaces are perpendicular if and only if their dot product is zero.
- See Example 5,6.(See board)
- Definition. We extend he above formula to hold for n-space as well.
- Thus two vectors in n -spaces are orthogonal if their dot product is zero. A nonempty set of vectors is said to be an orthogonal set if each pair of distinct vectors are orthogonal.
- Use "perpendicular" for nonzero-vectors.
- Zero vector 0 is orthorgonal to every vector in R^{n}. Actually, it is the only such vector in R^{n}.
- $\{(1,0,0),(0,1,0),(0,0,1)\}$
, Orthonormal set. Two vectors are orthonormal if they are orthogonal and have length 1. A set of vectors is orthonormal if every vector in the set has length 1 and each pair of vectors is orthogonal.
- Pythagoras theorem: If u and v are orthogonal vectors, then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
- Proof: $\|u+v\|^{2}=(u+v) .(u+v)=\|u\|^{2}+\|v\|+2 u . v$
$=\|u\|^{2}+\|v\|^{2}$.
- Cauchy-Swartz inequality
$\circ(u . v)^{2} \leq\|u\|^{2}\|v\|^{2}$ or |(u.v)|< \|u\|\|\|v\|
- Proof: If $u=0$ or $v=0$, then true.
- (See board.)
- Triangle inequality: u, v, w vectors.
- \|u+v\| $\leq\|u\|+\mid\|v\|$.
- Proof: $\|u+v\|^{2}=(u+v) .(u+v)=$
- $\|u\|^{2}+2(u . v)+\left|\left|v\left\|^{2} \leq\right\| u\left\|^{2}+2|u . v|+| | v\right\|^{2} \leq\right.\right.$
- $\|u\|^{2}+2\left\|u\left|\|| | v\|+| | v \|^{2}\right.\right.$
- Theorem 1.2.14. Parallelogram equation for vectors. $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$.
- Proof: see board
- Triangle inequality: u,v,w vectors $d(u, v) \leq d(u, w)+d(w, v)$.
- Proof: see board.

1.3. Vector equations of lines and planes

Lines

- General equation for lines in 2-space: $A x+B y=C$. (A,B not both zero)
- $A x+B y=0$ (passes origin)
- Another method (parametric equation): Let a line pass through x_0.
If x is a point on the line, then $x-x _0$ is always parallel to a fixed vector say v.
- Thus $\mathrm{x}-\mathrm{x}$ _0=tv for some real number t .
- $\mathrm{x}=\mathrm{x} _0+\mathrm{tv}$. (t is called a parameter)
- $(x, y)=\left(x _0, y _0\right)+t(a, b)$.
- $x=x _0+t a, y=y _0+t b$.
- In 3-space, $(x, y, z)=\left(x _0, y _0, z _0\right)+t(a, b, c)$. Thus, $x=x _0+t a, y=y _0+t b, z=z _0+t c$.
- Given two points $\mathrm{x}-1, \mathrm{x}_{-} 0$ in R^{2} or R^{3}, we try to find a line through them.
- The line is parallel to $x _1-x _0$.
- Thus $x=x _0+t\left(x _1-x _0\right)$ or $x=(1-t) x _0+t x _1$.
- This is a two-point vector equation.
- If t is in $[0,1]$, then the point is in the segment with endpoints $\mathrm{x}_{-} 0, \mathrm{x}_{-} 1$.
- Actually, one can turn the general equation to parametric equation in R^{2} and conversely.
- General to parametric: Find two points in it and use the two-point vector equation.
$\circ 7 x+5 y=35$. $(5,0)$ and $(7,0)$.
- $X=(1-t)(0,7)+t(5,0) . \quad x=5 t, y=7-7 t$.
- Parametric to general: Eliminate t from the equation:
- $x=5 t, y=7-7$ t. Then $7 x+5 y=35$. This is the general equation.
- Final comment: to give general equations for lines in 3-space, we need two equations.

A plane in R^{3}

- From a plane S in R^{3}, we can obtain a point x_0 and a perpendicular vector n.
- From x_0, and n, we can obtain a point-normal equation of S :
- n. ($\mathrm{x}-\mathrm{x}-0$) $=0$.
, Conversely, any x satisfying the equation lies in S.
- (A,B,C). (x-x_0,y-y_0,z-z_0)=0.
- $A\left(x-x _0\right)+B\left(y-y _0\right)+C\left(z-z _0\right)=0$.
$\circ A x+B y+C z=D$. (general equation of S.)
- Rmk:The coefficients give us the normal vector.
- Actually S passes 0 if and only if $D=0$.
- There is also a parametric equation of a plane:
- Given a plane W, let x_0 be a point and let v_1 and v_2 be two vectors parallel to W.
- Then $t _1 v _1+t _2 v _2$ is also parallel to W for any real numbers $t _1$ and $t _2$ by parallelogram laws.
Thus $x _0+t _1 v _1+t _2 v _2$ lies in W.
- Conversely, given any point x in W, $x-x _0$ is parallel to W and hence equals $t _1 v _1+t _2 v _2$ for some real numbers t _1 and t_2.
- Thus $x=x _0+t _1 v _1+t _2 v _2$ is the equation of points of W.
- Examples: Given a point, and two vectors, find parametric equations.
- Given three points x_0,x_1,x_2 on W, find a parametric equation

$$
x=x _0+t _1\left(x _1-x _0\right)+t _2\left(x _2-x _0\right) .
$$

- From general equation to a parametric equation. (Example 7)
- Solution: is to find three distinct point and use the above.
- From parametric equation to a general equation.
(not yet studied.)
- In general Rn:
- A line through x_0 parallel to v:
- $X=x _0+t v$.
- A plane through $x _0$ parallel to $v _1, v _2$.
- X=x_0+t_1v_1+t_2v_2
- Actually, we can do s-dimensional subspace with s parallel vectors. But we stop here.
- See Example 8 (page 34)

Comments on homework

- Ex set 1.2. Mostly computations.
- 1.2:13-16 use the definition
, 1.2: 32-35 Sigma notations (expect to know)
- 1.3: Two planes are parallel if their normal vectors are parallel. (perpendicular: the same)
- Finding normal vectors to the plane: Take the coefficients. (1.3:26-35)
- 1.3:37-38. Finding intersection line: Find two points in the intersections.

