1.2.Dot Products, Orthogonality

lengths

- Length, norm, magnitude of a vector $v=\left(v_{1}, \cdots, v_{n}\right)$ is $\|v\|=\left(v_{1}{ }^{2}+v_{2}{ }^{2}+\ldots+v_{n}{ }^{2}\right)^{1 / 2}$.
- Examples $v=(1,1, \ldots, 1)\|v\|=n^{1 / 2}$.
- Unit vectors $\mathrm{u}=\mathrm{v} /\|\mathrm{v}\|$ corresponds to directions.
- Standard unit vectors
- $\mathbf{i}=(1,0), \mathrm{j}=(0,1)$ in R^{2}
- $\mathbf{i}=(1,0,0), j=(0,1,0), k=(0,0,1)$ in R^{3}
- $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)$ in R^{n}.
$v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)=v_{1} e_{1}+v_{2} e_{2}+\ldots+v_{n} e_{n}$.
- This is a unique expression.
- Distances when given position vectors:
- $P\left(x_{-} 1, x_{2} 2\right)=\left\|P _1 P_{-} 2\right\|=\left(\left(x_{-} 2-x_{-} 1\right)^{2}+\left(y _2-\right.\right.$ $\left.\left.y_{-} 1\right)^{2}\right)^{1 / 2}$ in 2 -space.
- In 3-space
$d\left(P_{-} 1, P_{-} 2\right)=\left\|P_{-} 2-P_{-} 1\right\|=\left(\left(x_{-} 2-x_{-} 1\right)^{2}+\left(y _2-\right.\right.$ $\left.\left.y_{-} 1\right)^{2}+\left(z_{-} 2-z_{-} 1\right)^{2}\right)^{1 / 2}$ in $2-$ space.
- In n-space $u=\left(u_{-} 1, u_{-} 2, \ldots, u_{-} n\right), v=\left(v_{-} 1, v_{-} 2\right.$, ...,v_n),
Then $d(u, v)=\left(\left(u_{-} 1-v_{-} 1\right)^{2}+\left(u_{-} 2-v_{-} 2\right)^{2}+\ldots+\right.$ $\left.\left(u_{-} n-v _n\right)^{2}\right)^{1 / 2}$.
- Theorem. Two position vectors u, v in R^{n}. $\circ d(u, v) \geq 0, d(u, v)=d(v, u), d(u, v)=0$ if and only if $u=v$.
- Proof: Use the formula.
- We now introduce dot product. Given two vectors, the dot product gives you a real number.
- The dot product generalizes length and angle and is useful to compute many quantities. In fact, it is more fundamental than angles. Given

$$
\begin{aligned}
& u=\left(u_{-} 1, u_{-} 2, \ldots, u_{-} n\right), v_{=}\left(v_{-} 1, v_{-} 2, \ldots, v_{-} n\right), \\
& u \cdot u_{-} 1 v_{-} 1+u_{-} 2 v_{-} 2+\ldots+u_{-} n v_{-} n .
\end{aligned}
$$

Properties of dot products

- $\|\mathrm{v}\|=(\mathrm{v} \cdot \mathrm{v})^{1 / 2}$.
- Theorem 1.2.7
- $u \cdot v=v \bullet u$, Symmetry
- $u \cdot(v+w)=u \cdot v+u \cdot w$. distributivity
- $k(u \cdot v)=(k u) \cdot v$ homogenous
$\cdot v \cdot v \geq 0$, and $v \bullet v=0$ if and only if $v=0$. positivity
- Theorem 1.2.8.
- $0 \cdot v=v \cdot 0=0$
- $(u+v) \cdot w=u \cdot w+v \cdot w$
- $u \cdot(v-w)=u \cdot v-u \cdot w,(u-v) \cdot w=u \cdot w-v \cdot w$
- $k(u \cdot v)=u \bullet(k v)$
- Theorems 1.2.6,1.2.7 gives us a means to compute as one does with real numbers. (See board.)
- Theorem 1.2.8: u, v nonzero vectors in R^{2}, R^{3}. If θ is an angle between u and v, then

$$
\cos \theta=u \cdot v /\|u \cdot v\| \text { or } \theta=\cos ^{-1}(u \cdot v /\|u \cdot v\|) .
$$

- Proof: Use cosine law
- $\|v-u\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|\mid v\| \cos \theta$.
- Now $\left|\mid v-u \|^{2=}(v-u) \cdot(v-u)=(v-u) \cdot v-(v-u) \cdot u=v \bullet v-\right.$ $u \cdot v-v \cdot u+u \cdot u=\|v\|^{2}-2 u \cdot v+\|u\|^{2}$.
- $\|v\|^{2}-2 u \cdot v+\|u\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos \theta$.
- We simplify to get above.
- We consider θ to be in $[0, \pi]$ interval.
- Orthogonality.
- u•v=0 iff $\cos \theta=0$ iff $\theta=\pi / 2$.
- Two nonzero vectors in 2- or 3-spaces are perpendicular if and only if their dot product is zero.
- See Example 5,6.(See board)
- Definition. We extend he above formula to hold for n -space as well.
- Thus two vectors in n-spaces are orthogonal if their dot product is zero. A nonempty set of vectors is said to be an orthogonal set if each pair of distinct vectors are orthogonal.

- Zero vector 0 is orthorgonal to every vector in R^{n}. Actually, it is the only such vector in R^{n}.
- $\{(1,0,0),(0,1,0),(0,0,1)\}$
- Orthonormal set. Two vectors are orthonormal if they are orthogonal and have length 1. A set of vectors is orthonormal if every vector in the set has length 1 and each pair of vectors is orthogonal.
- Phythagoras theorem: If u and v are orthogonal vectors, then
$\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.
- Proof: $\|u+v\|^{2}=(u+v) .(u+v)=\|u\|^{2}+\|v\|+2 u \cdot v=$ $\|u\|^{2}+\|v\|^{2}$.
- Cauchy-Swartz inequality
- $(u . v)^{2} \leq\|u\|^{2}\|v\|^{2}$ or $|(u . v)| \leq\|u\|\|v\|^{2}$
- Proof: If $u=0$ or $v=0$, then true.
(See board.)
- Triangle inequality: u,v,w vectors.
- $\|u+v\| \leq\|u\|+\|v\|$.
- Proof: $\|u+v\|^{2}=(u+v) .(u+v)=$
- $\|u\|^{2}+2(u . v)+\|v\|^{2} \leq\|u\|^{2}+2|u . v|+\|v\|^{2} \leq$
- $\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}$

Theorem 1.2.14. Parallelogram equation for vectors. $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$.

- Proof: see board
- Triangle inequality: u, v, w vectors $d(u, v) \leq d(u, w)+d(w, v)$.
- Proof: see board.

1.3. Vector equations of lines and planes

Lines

- General equation for lines in 2-space: $A x+B y=C$. (A,B not both zero)
- $A x+B y=0$ (passes origin)
- Another method (parametric equation): Let a line pass through x_0.
If x is a point on the line, then $x-x_{-} 0$ is always parallel to a fixed vector say v.
- Thus $x-x _0=t v$ for some real number t.
- $\mathrm{x}=\mathrm{x}_{-} 0+\mathrm{tv}$. (t is called a parameter)
- $(x, y)=\left(x _0, y _0\right)+t(a, b)$.
$x=x_{-} 0+t a, y=y _0+t b$.
- In 3-space, ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)=(x_0,y_0,z_0)+t(a,b,c). Thus, $x=x_{-} 0+t a, y=y_{-} 0+t b, z=z _0+t c$.
- Given two points $x_{-} 1, x_{-} 0$ in R^{2} or R^{3}, we try to find a line through them.
- The line is parallel to $x_{-} 1-x_{-} 0$.
- Thus $x^{2}=x_{-} 0+t\left(x_{-} 1-x_{-} 0\right)$ or $\mathrm{x}=(1-t) x_{-} 0+t x_{-} 1$.
- This is a two-point vector equation.
- If t is in $[0,1]$, then the point is in the segment with endpoints $x_{-} 0, x_{-} 1$.
- Actually, one can turn the general equation to parametric equation in R^{2} and conversely.
- General to parametric: Find two points in it and use the two-point vector equation.

$$
\begin{aligned}
& .7 x+5 y=35 .(5,0) \text { and }(7,0) . \\
& \therefore X=(1-t)(0,7)+t(5,0) . \quad x=5 t, y=7-7 t .
\end{aligned}
$$

- Parametric to general: Eliminate t from the equation:
- $x=5 t, y=7-7 t$. Then $7 x+5 y=35$. This is the general equation.
- Final comment: to give general equations for lines in 3-space, we need two equations.

A plane in R^{3}

- From a plane S in R^{3}, we can obtain a point $x_{-} 0$ and a perpendicular vector n.
- From x_0, and n, we can obtain a pointnormal equation of S :
- $\mathrm{n} .(\mathrm{x}-\mathrm{x}-0)=0$.
- Conversely, any x satisfying the equation lies in S .
- (A,B,C). $\left(x-x-0, y-y-0, z-z _0\right)=0$.
- $A\left(x-x _0\right)+B(y-y-0)+C\left(z-z_{-} 0\right)=0$.
- $A x+B y+C z=D$. (general equation of S.)
- Rmk:The coefficients give us the normal vector.
- Actually S passes 0 if and only if $\mathrm{D}=0$.
- There is also a parametric equation of a plane:
- Given a plane W, let x_0 be a point and let v_1 and v _ 2 be two vectors parallel to W .
- Then $t_{-} 1 v_{-} 1+t_{-} 2 v_{-} 2$ is also parallel to W for any real numbers $t_{-} 1$ and $t_{-} 2$ by parallelogram laws. Thus $x_{-} 0+t_{-} 1 v_{-} 1+t_{-} 2 v_{-} 2$ lies in W.
- Conversely, given any point x in W, $x-x _0$ is parallel to W and hence equals $t_{-} 1 v_{-} 1+t_{-} 2 v_{-} 2$ for some real numbers $\mathrm{t}_{-} 1$ and $\mathrm{t}_{-} 2$.
- Thus $x=x_{-} 0+t_{-} 1 v_{-} 1+t_{-} 2 v_{-} 2$ is the equation of points of W.
- Examples: Given a point, and two vectors, find parametric equations.
- Given three points $x_{-} 0, x_{-} 1, x_{-} 2$ on W, find a parametric equation

$$
x=x_{-} 0+t_{-} 1\left(x_{-} 1-x_{-} 0\right)+t_{-} 2\left(x_{-} 2-x_{-} 0\right) .
$$

, From general equation to a parametric equation. (Example 7)

- Solution: is to find three distinct point and use the above.
- From parametric equation to a general equation.
(not yet studied.)
- In general $\mathrm{R}^{\mathrm{n} \text { : }}$
- A line through x_0 parallel to v :
- X=x_0+tv.
- A plane through $x_{2} 0$ parallel to $v_{-} 1, v_{-} 2$.
- $\mathrm{X}=\mathrm{x}_{-} 0+\mathrm{t}_{-} \mathrm{lv}$ _1 t _ 2 v _2
- Actually, we can do s-dimensional subspace with s parallel vectors. But we stop here.
- See Example 8 (page 34)

Comments on homework

- Ex set 1.2. Mostly computations.
- 1.2:13-16 use the definition
- 1.2: 32-35 Sigma notations (expect to know)
- 1.3: Two planes are parallel if their normal vectors are parallel. (perpendicular: the same)
- Finding normal vectors to the plane: Take the coefficients. (1.3:26-35)
1.3:37-38. Finding intersection line: Find two points in the intersections.
+ 1.3:39-40. Use substitutions.

