2.1. Introduction to Systems of linear equations

Linear Systems

- Recall lines and planes
- $x+y=4, x-5 y=1$. Solve this system.
- $x+y-z=0, x+y+z=1, x-y=1$. Solve this system.
- System of linear equations:
- $a_{-} 11 x_{-} 1+a_{-} 12 x_{-} 2+\ldots+a_{-} 1 n \times _n=b_{-} 1$
- $a_{-} 21 x_{-} 1+\mathrm{a}_{-} 22 x_{-} 2+\ldots+\mathrm{a}_{-} 2 \mathrm{n} \times _n=\mathrm{b}_{-} 2$
, a_m1 x_1+a_m2 x_2+...+a_mn x_n=b_m
- The system is homogeneous if all b_i s are zero.

Theoretical: Do solutions exists and if so, how many and in what form?

- To see this, we play with lines first.
- Two lines are parallel and are disjoint. -> no solution
- Two lines are parallel and coincide. -> infinitely many solutions
- Two lines are not parallel and intersect at unique point.-> unique solution
- In the 3-space, see Figure 2.1.2.
- Theorem 2.1.1. Every system of linear equations have zero, one, or infinitely many solutions.
- Proof: We will see this through Gaussian eliminations.
- Examples:
- $x-y=0, x+y=1->x-y=0,2 y=1->y=1 / 2$, $x=-1 / 2$
$x-y=2,2 x-2 y=0->x-y=0,0=-4->$ no solution

$$
\begin{aligned}
& \begin{array}{l}
x-y=-1,3 x-3 y=-3->x-y=-1,0=0->y=t, \\
x=t-1 .
\end{array}
\end{aligned}
$$

Augmented matrices and elementary row operations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots a_{2 n} x_{n}=b_{2} \\
& \vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots \quad \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{1}+\ldots a_{m n} x_{n}=b_{m} \\
& {\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]}
\end{aligned}
$$

Elementary operations

- These operations can be used to solve a system of equations
- 1. Multiply an equation through by a nonzero constant
- 2. Interchange to equations
- 3. Add a multiple of one equation to another.
- For a matrix (an augmented one)
- Multiply a row through a nonzero constant
- Interchange two rows
- Add a multiple of one row to another.
- Example
- See Example 6
- Example 7. Write a vector $w=(4,1,3)$ as a linear combination of vectors $a=(1,1,1)$, $b=(2,-1,2), c=(0,0,1)$.
- Solve W=c_1a+c_2b+c_3c.
- Solve (4, 1,3)=c_1(1,1,1)+c_2(2,-1,2)+c_3(0,0,1)

。 $(4,1,3)=\left(c_{-} 1+2 c_{-} 2, c_{-} 1-c_{-} 2, c_{-} 1+2 c_{-} 2+c_{-} 3\right)$

$$
\begin{array}{ll}
c_{1}+2 c_{2} & =4 \\
c_{1}-c_{2} & =1 \\
c_{1}+2 c_{2}+c_{3} & =3
\end{array}
$$

Comments Ex.2.1

- 1-4 Linearity of equations
- 5-6 solution checking
, 7-8 Graphing problems
- 9,10 solving
, 11,12 Finding equations (Eliminate t)
- 15,16 number of solutions
- 17-24 System <-> augmented matrix
- 25,26 Elementary row operations

2.2. Solving equations by row reduction
 Row reduced echelon form

Reduced row echelon form

- Recall Ex. 6.
- A) If a row is not zero, the first nonzero element is 1. (Leading 1)
- B) A zero row lie below all nonzero rows.
- C) The leading 1 of the lower row starts later than the leading 1 of the upper row (up to here row echelon form)
- D) Each column containing a leading 1 is zero elsewhere.

Examples

- See Examples 1, 2.
- Once one obtains a reduced row echelon matrix, then what do we do?
- Example 4 (a) no solutions (contradiction always arises)
- Exampe 4 (b) OK.
- $x+3 z=-1, y-4 z=2$
- z is not associated with any leading one.
- We call such z a free variable.
- Let assign t to z. Then $x=-1-3 t, y=2+4 t, z=t$
- Is the solution space. (infinite case)
- In the unique case there is no free variable.
- It is often desirable to write solution spaces as linear combinations of column vectors.
- For Example 4 (b)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1-3 t \\
2+4 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

Gauss Jordan Eliminations

- Using elementary row operations, one can make any matrix into a reduced row echelon form.
- Thus any system of equations can be solved.
- The basic step.
- 1. Find a first column with a nonzero entry. (The column is usually the first one.)
- 2. Interchange so that the nonzero entry is at the top row
- 3. Multiply to make it to be 1.
-4. Use 1 , to make the entries below it to become 0.
- Now take the first row out of considerations and work in ($m-1$) xn matrix A^{\prime} below.
- We work the same way:
- Find the first column A' with nonzero entry.
- Interchange to move it to the first row of A'.
- Scalar-multiply to make it 1 .
- Make the entries below 1 to be zero.
- We obtain row-echelon form.
- Now use each leading 1 to make the other entries in the same column become zero.
- This is called the Gauss-Jordan elimination.
- Gaussian elimination: not do the reduction.
- Pivot positions: positions of leading 1 s .
- Pivot columns: columns that containing leading 1 s .

Solving equations

- A system of linear equations
- Take an augmented matrix
- Gauss-Jordan elimination
- Make it back into a system of linear equations.
- Take free variables: variables not associate with leading 1 s .
- Solve
- Finally make it into a linear combinations of column vectors.
- See Board for an example.

Back substitution

- One can use Gaussian elimination only.
- Make it back into a system of linear equations.
- In this case, we solve from the lowest equation.
- See the black board.
- Concluding Theorem: A system of linear equations have either no solution or a unique solution or infinitely many solutions.

Homogeneous linear system

- If the system of linear equations consists of only homogeneous linear equations, we call the system homogeneous.
- This is equivalent to all constant terms being 0.
- A homogeneous linear system always have at least one solution ($0,0, \ldots, 0$) a trivial solution.
- Theorem 2.2.1. A homogeneous system has either a unique trivial solution or infinitely many solutions.

Consequences

- Theorem 2.2.2. homogeneous linear system with n unknowns. Its reduced echelon matrix has r nonzero rows. Then the system has $n-r$ free variables.
- This is actually the dimension of the solution space....

Computer implementations

- We always use largest nonzero element to put in the top rows.

Comments on Ex. 2.2.

- 1-8 recognizing forms (reduced row echelon forms, row echelon forms...)
- 9-14. Solving given reduced echelon forms.
- 17-20 Back substitution
- 23-42 Solving. Gauss-Jordan
- 43-46 A bit tricky....
- $52 \ldots$

