3.5. The geometry of linear systems

Solutions for inhomogeneous systems. Consistency Geometric interpretations

Translated subspaces

- W is a subspace.
- $x_0+W=\{v=x_0+w|w \text{ is in }W\}$
- This is not a subspace in general but is called an affine subspace (linear manifold, flat).
- For example x_0+span{v_0,v_1,...,v_s} ={v=x_0+c_0v_1+...+c_sv_s}
- > y=1 in R^2 . {(x,1)|x in R}=(0,1)+{(x,0)|x in R}
- Ax+By+Cz=D in R³ translated from Ax+By +Cz=0 since they are parallel.

The solution space of Ax=b and that of Ax=0

- ▶ W={x|Ax=b}, W_O={x|Ax=O}
- Let x be in W. Take one x_0 in W. Then x-x_0 is in W_0.
 - $A(x-x_0)=Ax-Ax_0=b-b=0$.
- Given an element x in W_O. x+x_0 is in W.
- $A(x+x_0)=Ax+Ax_0=O+b=b$.
- Thus, $W=x_0+W_0$.

Theorem 3.5.1 If $A\mathbf{x} = \mathbf{b}$ is a consistent nonhomogeneous linear system, and if W is the solution space of the associated homogeneous system $A\mathbf{x} = \mathbf{0}$, then the solution set of $A\mathbf{x} = \mathbf{b}$ is the translated subspace $\mathbf{x}_0 + W$, where \mathbf{x}_0 is any solution of the nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ (Figure 3.5.1).

 Here (1/2,1/2,0) is in W and {s(1,0,1)} are solutions of the homogeneous system.

Solution to Ax=b can be written as x=x_h+x_0 where x_0 is a particular solution and x_h is a homogeneous solution.

Theorem 3.5.2 A general solution of a consistent linear system $A\mathbf{x} = \mathbf{b}$ can be obtained by adding a particular solution of $A\mathbf{x} = \mathbf{b}$ to a general solution of $A\mathbf{x} = \mathbf{0}$.

Theorem 3.5.3 If A is an $m \times n$ matrix, then the following statements are equivalent.

- (a) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (b) $A\mathbf{x} = \mathbf{b}$ has at most one solution for every \mathbf{b} in \mathbb{R}^m (i.e., is inconsistent or has a unique solution).

Theorem 3.5.4 A nonhomogeneous linear system with more unknowns than equations is either inconsistent or has infinitely many solutions.

Consistency of a linear equation.

Ax=b can be written as x_1v_1+x_2v_2+... +x_nv_n=b.

Theorem 3.5.5 A linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

- This can be used to tell whether a certain vector can be written as a linear combination of some other vectors
- Example 2.

Hyperplanes

- a_1x_1+a_2x_2+...+a_nx_n=b in Rⁿ. (a_i not all zero)
- The set of points (x_1,x_2,...,x_n) satisfying the equation is said to be a hyperplane.
- ▶ b=0 if and only if the hyperplane passes O.
- We can rewrite a.x=b where a=(a_1,...,a_n) and x=(x_1,...,x_n).
- A hyperplane with normal a.
- a.x=0. An orthogonal complement of a.
- Example 3.

Geometric interpretations of solution spaces.

- ▶ a_11 x_1+a_12 x_2+...+a_1n x_n=b_1
- a_21 x_1+a_22 x_2+...+a_2n x_n=b_2
- • • • •
- $a_m1 x_1+a_m2 x_2+...+a_mn x_n=b_m$
- This can be written: a_1.x=0, a_2.x=0, ...,a_m.x=0.

Theorem 3.5.6 If A is an $m \times n$ matrix, then the solution space of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row vector of A.

See Example 4

Look ahead

- The set of solutions of a system of linear equation can be solved by Gauss-Jordan method.
- The result is the set W of vectors of form x_0+t_1v_1+...+t_sv_s where t_is are free variables.
- We show that {v_1,v_2,...,v_n} is linearly independent later.
- Thus W = x_0+W_0. W is an affine subspace of dimension s.

Ex. Set 3.5.

- ▶ 1-4 solving
- ▶ 5-8 linear combinations
- ▶ 7-10 span
- 11-20 orthogonality

