# 3.5. The geometry of linear systems 

Solutions for inhomogeneous systems. Consistency
Geometric interpretations

## Translated subspaces

- $W$ is a subspace.
- $x_{-} 0+W=\left\{v=x_{-} 0+w \mid w\right.$ is in $\left.W\right\}$
- This is not a subspace in general but is called an affine subspace (linear manifold, flat).
- For example $x_{-} 0+s p a n\left\{v_{-} 0, v_{-} 1, \ldots, v_{-} s\right\}$ $=\left\{v=x_{-} 0+c_{-} 0 v_{-} 1+\ldots+c_{-} s v_{-} s\right\}$
- $y=1$ in $R^{2}$. $\{(x, 1) \mid x$ in $R\}=(0,1)+\{(x, 0) \mid x$ in $R\}$
- $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$ in $\mathrm{R}^{3}$ translated from $\mathrm{Ax}+\mathrm{By}$ $+C z=0$ since they are parallel.


## The solution space of $A x=b$ and that of $A x=0$

- $W=\{x \mid A x=b\}, W \_O=\{x \mid A x=0\}$
- Let x be in W . Take one $\mathrm{x}_{-} 0$ in W . Then $\mathrm{x}-\mathrm{x}_{-} 0$ is in W_O.
。 $A\left(x-x \_0\right)=A x-A x \_0=b-b=0$.
- Given an element $x$ in W_O. $x+x \_0$ is in W.
- $A\left(x+x_{-} 0\right)=A x+A x_{-} 0=0+b=b$.
- Thus, W=x_0+W_O.

Theorem 3.5.1 If $A \mathbf{x}=\mathbf{b}$ is a consistent nonhomogeneous linear system, and if $W$ is the solution space of the associated homogeneous system $A \mathbf{x}=\mathbf{0}$, then the solution set of $A \mathbf{x}=\mathbf{b}$ is the translated subspace $\mathbf{x}_{0}+W$, where $\mathbf{x}_{0}$ is any solution of the nonhomogeneous system $A \mathbf{x}=\mathbf{b}$ (Figure 3.5.1).

- $W=\{(x, y) \mid x+y=1\}$ is obtained from
- $\mathrm{W} \_0=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}+\mathrm{y}=0\}$ adding $(1,0)$ in W .
- $W=\{(x, y, z) \mid A x+B y+C z=D\}$ is obtained from $W_{-} 0=\{(x, y, z) \mid A x+B y+C z=0\}$ by a translation by ( $x-0, y-0, z_{-} 0$ ) for any point of W.
- $W=\{(x, y, z) \mid x+y+z=1, x-y=0\}$
- $=\{(\mathrm{s}+1 / 2,1 / 2, \mathrm{~s}) \mid \mathrm{s}$ in R$\}$

- Here $(1 / 2,1 / 2,0)$ is in W and $\{s(1,0,1)\}$ are solutions of the homogeneous system.


## - Solution to $\mathrm{Ax}=\mathrm{b}$ can be written as

 $\mathrm{x}=\mathrm{x} \_\mathrm{h}+\mathrm{x} \_0$ where $\mathrm{x} \_0$ is a particular solution and $x_{-} h$ is a homogeneous solution.Theorem 3.5.2 A general solution of a consistent linear system $A \mathbf{x}=\mathbf{b}$ can be obtained by adding a particular solution of $A \mathbf{x}=\mathbf{b}$ to a general solution of $A \mathbf{x}=\mathbf{0}$.

Theorem 3.5.3 If $A$ is an $m \times n$ matrix, then the following statements are equivalent.
(a) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(b) $A \mathbf{x}=\mathbf{b}$ has at most one solution for every $\mathbf{b}$ in $R^{m}$ (i.e., is inconsistent or has a unique solution).

Theorem 3.5.4 A nonhomogeneous linear system with more unknowns than equations is either inconsistent or has infinitely many solutions.

## Consistency of a linear equation.

- $A x=b$ can be written as $x_{-} 1 v_{-} 1+x_{-} 2 v_{-} 2+\ldots$ $+x \_n v \_n=b$.

Theorem 3.5.5 A linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if $\mathbf{b}$ is in the column space of $A$.

- This can be used to tell whether a certain vector can be written as a linear combination of some other vectors
- Example 2.


## Hyperplanes

- $a_{\text {_ }} 1 x_{-} 1+a_{-} 2 x_{-} 2+\ldots+a_{-} n x \_n=b$ in $R^{n}$. (a_i not all zero)
- The set of points ( $x_{-} 1, x_{-} 2, \ldots, x_{-} n$ ) satisfying the equation is said to be a hyperplane.
- $b=0$ if and only if the hyperplane passes 0 .
- We can rewrite $a . x=b$ where $a=\left(a_{-} 1, \ldots, a \_n\right)$ and $x=\left(x_{-} 1, . ., x \_n\right)$.
- A hyperplane with normal a.
- $a . x=0$. An orthogonal complement of $a$.
- Example 3.


## Geometric interpretations of solution spaces.

- $a_{-} 11 x_{-} 1+a_{-} 12 x_{-} 2+\ldots+a_{-} 1 n x_{-} n=b_{-} 1$
, $a_{-} 21 x_{-} 1+a_{-} 22 x_{-} 2+\ldots+a_{-} 2 n \times \_n=b_{-} 2$

- This can be written: $a_{-} 1 . x=0, a_{-} 2 . x=0$, ...,a_m.x=0.

Theorem 3.5.6 If $A$ is an $m \times n$ matrix, then the solution space of the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ consists of all vectors in $R^{n}$ that are orthogonal to every row vector of $A$.

## - See Example 4

## Look ahead

- The set of solutions of a system of linear equation can be solved by Gauss-Jordan method.
- The result is the set $W$ of vectors of form $\mathrm{x}_{-} 0+\mathrm{t}_{-} 1 \mathrm{v}_{-} 1+\ldots+\mathrm{t}$-sv_s where $t_{-}$is are free variables.
- We show that $\left\{v_{-} 1, v_{-} 2, \ldots, v_{-} n\right\}$ is linearly independent later.
- Thus W = x_0+W_0. W is an affine subspace of dimension s .


## Ex. Set 3.5.

- 1-4 solving
- 5-8 linear combinations
- 7-10 span
- 11-20 orthogonality

