3.6. Matrices with special forms

Diagonal matrix, triangular matrix, symmetric and skew-symmetric matrices, AA^{\top}, Fixed points, inverting I-A

Diagonal matrices

- A square matrix where non-diagonal entries are 0 is a diagonal matrix.
- d_I, d_2,... are real numbers (could be zero.) O, I diagonal matrices

$$
\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]
$$

- If every diagonal entry is not zero, then the matrix is invertible.
- The inverse is a diagonal matrix with diagonal entries I/d_I, I/d_2,..., I/d_n.
- D^{k} for positive integer k is diagonal with entries d_lik,...,d_nk.
- See Example I.
- Left multiplication of the matrix by a diagonal matrix. Right multiplication of the matrix by a diagonal matrix.

Triangular matrices

- Given a square matrix.
- Lower triangular matrices: entries above the diagnonals a_ij $=0$ if $\mathrm{i}<\mathrm{j}$.
- Upper triangular matrices:entries below the diagonals $\mathrm{a}_{-} \mathrm{ij}=0$ if $\mathrm{i}>\mathrm{j}$.
- A lower triangular matrix or an upper triangular matrix are triangular.
- Row echelon forms are upper triangular.

Theorem 3.6.1

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
(b) A product of lower triangular matrices is lower triangular, and a product of upper triangular matrices is upper triangular.
(c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.
(d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix is upper triangular.

- Proof: (b) A,B both upper triangular.
(AB)_ij $=0$ if $i>j$.
- (c),(d) proved later
- See Example 4

Symmetric and skew-symmetric matrices

- A square matrix A is symmetric if $A^{\top}=A$ or $\mathrm{A} _\mathrm{ij}=\mathrm{A}$ _i.
- A is skew-symmetric if $\mathrm{A}^{\top}=-\mathrm{A}$ or $\mathrm{A}_{-} \mathrm{ij}=-$ A_ji.

Theorem 3.6.2 If A and B are symmetric matrices with the same size, and ifk is any scalar, then:
(a) A^{T} is symmetric.
(b) $A+B$ and $A-B$ are symmetric.
(c) $k A$ is symmetric.

Theorem 3.6.3 The product of two symmetric matrices is symmetric if and only if the matrices commute.
$(A B)^{\top}=B^{\top} A^{\top}=B A$. This equals $A B$ iff $A B=B A$ iff A and B commute.

- A, B skew-symmetric $(A B)^{\top}=B^{\top} A^{\top}=$ $(-B)(-A)=B A=A B$ iff A and B commute. ($A B$ is symmetric in fact.)
- The right conditions is $B A=-A B$ (anticommute)

Invertible symmetric matrix.

- A symmetric matrix may not by invertible.
- Example: 2×2 matrix with all entries I is symmetric but not invertible.

Theorem 3.6.4 If A is an invertible symmetric matrix, then A^{-1} is symmetric.

- Proof: $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}=A^{-1}$ as A is symmetric. Thus A^{-1} is symmetric also.

$\mathrm{AA}^{\top}, \mathrm{A}^{\top} \mathrm{A}$ (A need not be square.)

- $A A^{\top}$ is symmetric $\left(\left(A A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top} A^{\top}=A A^{\top}.\right)$
- Similary $\mathrm{A}^{\top} \mathrm{A}$ is symmetric.
- If row vectors of A are $r_{-} 1, r_{-} 2, . ., r _n$, then the column vectors of A^{\top} are $r_{-} I^{\top}, r_{-} 2^{\top}, \ldots, r_{-} n^{\top}$.

$$
A A^{T}=\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right]\left[\begin{array}{llll}
r_{1}^{T} & r_{2}^{T} & \ldots & r_{n}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
r_{1} r_{1}^{T} & r_{1} r_{2}^{T} & \ldots & r_{1} r_{n}^{T} \\
r_{2} r_{1}^{T} & r_{2} r_{2}^{T} & \ldots & r_{2} r_{n}^{T} \\
\vdots & \vdots & \ddots & \vdots \\
r_{n} r_{1}^{T} & r_{n} r_{2}^{T} & \ldots & r_{n} r_{n}^{T}
\end{array}\right]
$$

$$
A A^{T}=\left[\begin{array}{cccc}
r_{1} \cdot r_{1} & r_{1} \cdot r_{2} & \cdots & r_{1} \cdot r_{n} \\
r_{2} \cdot r_{1} & r_{2} \cdot r_{2} & \ldots & r_{2} \cdot r_{n} \\
\vdots & \vdots & \ddots & \vdots \\
r_{n} \cdot r_{1} & r_{n} \cdot r_{2} & \cdots & r_{n} \cdot r_{n}
\end{array}\right]
$$

Theorem 3.6.5 If A is a square matrix, then the matrices $A, A A^{T}$, and $A^{T} A$ are either all invertible or all singular.

If A is invertible, then so is A^{\top} and hence $A A^{\top}$ and $A^{\top} A$ are invertible.
If $A^{\top} A$ or $A A^{\top}$ are invertible, the use 3.3.8 (b) to prove this.

I-A.

- A fixed point x of $A: A x=x$.
- We find x by solving ($I-A$) $x=0$.
- Fixed points can be useful.
- Example 6.
- Finding the inverse of I-A are often useful in applications. Suppose $A^{k}=0$ for some positive k .
- Recall the polynomial algebra:

。 $(I-x)\left(I+x+\ldots+x^{k-1}\right)=I-x^{k}$.

- Plug A in to obtain $(I-A)\left(I+A+\ldots+A^{k-l}\right)=I-A^{k}=I$.
- Thus (I-A) ${ }^{-1}=1+A+\ldots+A^{k-1}$.
- Examples: Strictly upper triangular or strictly lower triangular matrices...
- Those that are of form BAB^{-1} for A strictly triangular.

Using power series to obtain

 approximate inverse to l-A.- For real x with $|x|<I$, we have a formular $(1-x)^{-1}=1+x+x^{2}+\ldots+x^{n}+\ldots$
- This converges absolutely.
- We plug in A to obtain $(1-A)^{-1}=1+A+A^{2}+\ldots+A^{n}+\ldots$
- Again this will converge under the condition that sum of absolute values of each column (or each row) is less than 1 .
- Basic reason $A^{n}->O$ as $n->\infty$.
- (see Leontief Input-Output Economic Model)

Ex Set 3.6.

- I-6. Diagonal matrices
- 7-I0 Triangular matrices
- II-24 Symmetric matrices, inverse...
- 25,26 Inverse of I-A

