# 3.7. Matrix Factorization 

 LU decomposition L: lower triangular U: upper triangular
## Solving a linear system by factorizations

- We try to write $A=L U$ where $L$ is lower triangular and $U$ upper triangular.
- The reason is that the calculations are simpler.
- LUx=b
- Write Ux=y.
- $\mathrm{Ly}=\mathrm{b}$ and solve for y .
- Solve for $x$ in $U x=y$
- Example 1.

Definition 3.7.1 A factorization of a square matrix $A$ as $A=L U$, where $L$ is lower triangular and $U$ is upper triangular, is called an $\boldsymbol{L} \boldsymbol{U}$-decomposition or $\boldsymbol{L} \boldsymbol{U}$-factorization of $A$.

- If A can be reduced without using row exchanges, then we can obtain LUdecomposition.
- $E_{-} k \cdots \cdot E_{-} 1 A=R$ ref $R$ is upper triangular. Let $U=R$.
- Thus $A=E_{-} 1^{-1} E_{-} 2^{-1} \cdots E_{-} k^{-1} U$.
- Then $\mathrm{E}_{-} \mathrm{i}^{-1}$ is either diagonal or is lower triangular.
- The product $E_{-} 1^{-1} E_{-} 2^{-1} \ldots E_{-} k^{-1}$ is lower triangular.

Theorem 3.7.2 If a square matrix A can be reduced to row echelon form by Gaussian elimination with no row interchanges, then $A$ has an $L U$-decomposition.

- Steps to produce L and U.

1. Reduce $A$ to ref $U$ without row changes while recording multipliers for leading 1 s and multipliers to make 0 s below the leading 1 s .
2. Diagonal of L: place the reciprocals of the multipliers of the leading 1 s .
3. Below the diagonals of $L$ : place the negatives of multipliers to make 0 .
4. Use L and U.

- See Example 2.


## The relation between Gaussian

 elimination and LU-decomposition- Answer: They are equivalent for our matrices.
- Reason: As we do the row operations, LUdecomposition keeps track of operations.
- Gaussian elimination also keep track by changing b's.
- $A x=b$ is changed to $U x=y$. $L y=b$ by multiplying $L$ on both sides.
, That is [A|b] -> [U|y].
- See Example 3. (omit)


## Matrix inversion by LUdecompositions

- A nxn matrix
- $A B=I$ can be converted to
- $A\left[x_{-} 1, \cdots, x_{-} n\right]=\left[e_{-} 1, e_{-} 2, \cdots, e_{-} n\right]$
- $A x_{-} 1=e \_1, A x_{-} 2=e \_2, \cdots, A x \_n=e \_n$.
- We solve these by LU-decompositions.


## LDU-decompositions

- We can write L=L'D where L' has only 1 s in the diagonals.
- We can write $A=$ LDU.
- See Example *.


## Using permutation matrix.

- Sometimes, we can permute the rows of A so that LU-decomposition can happen.
- $P A=U$ where $P$ is a product of exchange elementary matrices.
- $P$ is called a permutation matrix (it has only one 1 in each row or column)
- Acually P correspond to a 1-1 onto map f from $\{1,2, . ., n\}$ to itself. $P_{-} i j=1$ if $j=f(i)$ and 0 otherwise.


## Computer cost to solve a linear

 system., Each operation +,-,/,* for floating numbers is a flop (floating point operation).

- We need to keep the number of flops down to minimize time.
- Today's PC : $10^{9}$ flops per second.
- Solve $\mathrm{Ax}=\mathrm{b}$ by Gauss-Jordan method:
- 1. n flops to introduce 1 in the first row
- 2. n mult and n add to introduce one 0 below 1 .

There are ( $n-1$ ) rows: $2 n(n-1)$ flops

- Total for column 1 is $n+2 n(n-1)=2 n^{2}-n$.
- For next column, we replace n by $\mathrm{n}-1$ and the total is $2(n-1)^{2}-(n-1)$.
- The forward total for columns:
$2 \mathrm{n}^{2}+\mathrm{n}+2(\mathrm{n}-1)^{2}-(\mathrm{n}-1)+\cdots+2-1$
$=2 n^{3} / 3+n^{2} / 2-n / 6$.
- Now backward stage:
- Last column ( $n-1$ ) multiplication ( $n-1$ ) addition to make 0 the entries above the leading 1 s . Total: $2(\mathrm{n}-1)$.
- For column (n-1): 2(n-2).
- Backward Total $2(n-1)+2(n-2)+\cdots+2(n-n)=n^{2}-n$.
- Total. $2 n^{3} / 3+3 n^{2} / 2-7 n / 6$.


## For large examples

- Forward flops is approximately $2 n^{3} / 3$.
- Backward flops is approximately $n^{2}$.
- See Example 4 and Table 3.7.1.
- Actually choosing algorithms really depends on experiences for the particular set of problems.

