Chapter 4 Determinants

SECTION 4.1. DETERMINANTS; COFACTOR EXPANSIONS

DETERMINANTS

* Determinants are useful because it gives us invariant. Related to volume change.
* Invariants are like the essential properties.
* Important properties of a person is his character. In fact, character determines a person and not the reverse is true.
* In fact, the properties of the determinants makes it useful and not its formula.

DETEMINANTS FOR 2X2, 3X3 MATRICES

* Determinants for 2×2 case was discovered by solving equations.
* $u=a x+b y, v=c x+d y .->x=(d u-b v) /(a d-b c)$,
$y=(a v-c u) /(a d-b c)$.
$\times \operatorname{det} A=|\{a, b\},\{c, d\}|=a d-b c$
\times For 3×3 case:

$$
\begin{aligned}
& \operatorname{det}(A)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{aligned}
$$

ELEMENTARY PRODUCTS

$\times 3 \times 3$ case formular consists of a_1?a_2?a_3?.

* The ? were obtained by permuting 1,2,3,
\times How do we get the signs?
\times An interchange: exchange two but leave everything else fixed.
* Given a permutation $\left\{j_{_} 1, j _2, j _3\right\}$, we can put this back to $(1,2,3)$ by interchanges.
This is done by bringing 1 to the first position by interchanges and then 2 to the second position and so on.
* Acutally there may be many ways to do this.
\times However, the number interchanges is either odd or even.
\times Hence if the number of interchanges is even, then we use + . If the number of interchanges is odd, then we use -
* A signed elementary product is an elementary product with a sign given as above.

Definition 4.1.1 The determinant of a square matrix A is $\operatorname{denoted}$ by $\operatorname{det}(A)$ and is defined to be the sum of all signed elementary products from A.

* Formula

$$
\begin{aligned}
& \operatorname{det}(A)=|A|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| \\
& =\sum \pm a_{1 j_{-}-} a_{2 j_{-2}} \ldots a_{n j_{-} n}
\end{aligned}
$$

The summation is over all permutations \{j_1, j_2,..., j_n\}.

EVALUATION

* Evaluation may not be so easy from this formula since the number of terms is n !
* This grows exponentially fast.
* We use Gaussian eliminations and LUdecompositions to obtain it much much faster.

DETERMINANTS WITH A ZERO ROW

Theorem 4.1.2 If A is a square matrix with a row or a column of zeros, then $\operatorname{det}(A)=0$.
× Proof: Every signed elementary product is zero.

DETERMINANTS OF TRIANGULAR MATRICES

Theorem 4.1.3 If A is a triangular matrix, then $\operatorname{det}(A)$ is the product of the entries on the main diagonal.

Proof: Each elementary product get a unique entry from each column and each row.
-The diagonal clearly survive. Given any permutation.

- Any other elementary product will have Os.
-Gaussian elimination can prove this.

MINOR, COFACTOR

* A a square matrix
* The minor of a_ij: Remove i-th row and j-th column and take its determinant: M_ij.
The cofactor of $a_{-} \mathrm{ij}$: $\mathrm{C} _\mathrm{ij}=(-1)^{i+j} \mathrm{M} _\mathrm{ij}$.
\times Example 3.

COFACTOR EXPANSIONS

Theorem 4.1.5 The determinant of an $n \times n$ matrix A can be computed by multiplying the entries in any row (or column) by their cofactors and adding the resulting products; that is, for each $1 \leq i \leq n$ and $1 \leq j \leq n$,

$$
\operatorname{det}(A)=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
$$

(cofactor expansion along the j th column)
and

$$
\operatorname{det}(A)=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

(cofactor expansion along the i th row)

See Example 5:

EX SET 4.1

* 1-10 Determinant using formular
* 11,12 permutation
* 13-18 determinants
* 19,20 inspection determinants

21-32 Cofactor expansions
$\times 33-36$ a bit harder

