4.3. Cramer's Rules and applications of determinant

MATRIX OF COFACTORS OF A

× C_ij cofactor of A_ij

Definition 4.3.2 If A is an $n \times n$ matrix and $C_{i j}$ is the cofactor of $a_{i j}$, then the matrix

$$
C=\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 n} \\
C_{21} & C_{22} & \cdots & C_{2 n} \\
\vdots & \vdots & & \vdots \\
C_{n 1} & C_{n 2} & \cdots & C_{n n}
\end{array}\right]
$$

is called the matrix of cofactors from A. The transpose of this matrix is called the adjoint (or sometimes the adjugate) of A and is denoted by $\operatorname{adj}(A)$.

Theorem 4.3.1 If the entries in any row (column) of a square matrix are multiplied by the cofactors of the corresponding entries in a different row (column), then the sum of the products is zero.

* Proof: We take an i-th row and copy it over the j -th row.
* The resulting matrix A' has two equal rows. Hence the determinant is zero.
* The cofactor expansion of A^{\prime} over the j-th row is the above expression.
\times Example 1:

FORMULA INVERSE MATRIX

Theorem 4.3.3 If A is an invertible matrix, then

$$
\begin{equation*}
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A) \tag{2}
\end{equation*}
$$

\times Proof: We show $A \cdot \operatorname{adj}(A)=\operatorname{det}(A)$ I.

+ The reason is that row i times column j gives 0 if i does not equal j by 4.3.1.
+ If $\mathrm{i}=\mathrm{j}$, then row times the column is $\operatorname{det}(\mathrm{A})$.
+ Hence the result is $\operatorname{det}(\mathrm{A})$ on the diagonal and zero elsewhere.
* If an integer matrix has a determinant ± 1, then its inverse is another integer matrix.
* To see this, $\operatorname{adj}(A)$ is an integer matrix.
\times Now multiply an integer by $1 / \operatorname{det}(\mathrm{A})$.
This is sometimes useful to know in group theory.

CRAMER'S RULE

Theorem 4.3.4 (Cramer's Rule) If $A \mathbf{x}=\mathbf{b}$ is a linear system of n equations in n unknowns, then the system has a unique solution if and only if $\operatorname{det}(A) \neq 0$, in which case the solution is

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, \quad x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots, \quad x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

where A_{j} is the matrix that results when the j th column of A is replaced by \mathbf{b}.

* Proof : Omit.

* See Example 6.

GEOMETRIC INTERPRETATION OF DET(A)

* In the plane, the area of a parallelogram spanned by vectors u, v is given by $|\operatorname{det}[u, v]|$.
* Proof: $\operatorname{det}[u, v]=\operatorname{det}\left[u, v-P _u(v)\right]$ where $P_{-} u(v)$ is a projection v to the line containing u.
+ Now the columns are perpendicular.
+ For perpendicular $x, y,|\operatorname{det}[x, y]|=||x||| | y| |$ since y is obtained by taking coordinates of x and changing the order and the sign of one.
$+\left|\operatorname{det}\left[u, v-P _u(v)\right]\right|$ equals the product of lengths. That is the area of the parallelogram.

Theorem 4.3.5

(a) If A is a 2×2 matrix, then $|\operatorname{det}(A)|$ represents the area of the parallelogram determined by the two column vectors of A when they are positioned so their initial points coincide.
(b) If A is a 3×3 matrix, then $|\operatorname{det}(A)|$ represents the volume of the parallelepiped determined by the three column vectors of A when they are positioned so their initial points coincide.

Theorem 4.3.6 Suppose that a triangle in the xy-plane has vertices $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$, and $P_{3}\left(x_{3}, y_{3}\right)$ and that the labeling is such that the triangle is traversed counterclockwise from P_{1} to P_{2} to P_{3}. Then the area of the triangle is given by

$$
\text { area } \triangle P_{1} P_{2} P_{3}=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{7}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

VANDERMOND DETERMINANT

* $A_{-} i j=x_{-} \mathrm{i}^{\mathrm{j}-1} . \mathrm{A}$ is called a Vandermond matrix.
+ The determinant is called he Vandermond determinant.
+ The values is the product of all (x_j-x_i) where j>i for i,j in 1,2,...,n.

$$
\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right|=\Pi_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

+ Thus if $\left\{x _1, x _2, \ldots, x _n\right\}$ are a set of mutually distinct points, then the determinant is not zero.

CROSS PRODUCT

* Cross products useful in mechanics of spinning objects, electromagnetism...

Definition 4.3.7 If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are vectors in R^{3}, then the cross product of \mathbf{u} with \mathbf{v}, denoted by $\mathbf{u} \times \mathbf{v}$, is the vector in R^{3} defined by

$$
\begin{equation*}
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right) \tag{10}
\end{equation*}
$$

or equivalently,

$$
\mathbf{u} \times \mathbf{v}=\left(\left|\begin{array}{cc}
u_{2} & u_{3} \tag{11}\\
v_{2} & v_{3}
\end{array}\right|,-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|,\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right)
$$

CALCULATIONS

\star We let $\mathrm{i}=(1,0,0), \mathrm{j}=(0,1,0), \mathrm{k}=(0,0,1)$.

$$
u \times v=\left|\begin{array}{ccc}
i & j & k \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{31}
\end{array}\right|
$$

Example 9.

* Properties:

Theorem 4.3.8 If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in R^{3} and k is a scalar, then:
(a) $\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$
(b) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
(c) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$
(d) $k(\mathbf{u} \times \mathbf{v})=(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})$
(e) $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$
$(f) \mathbf{u} \times \mathbf{u}=\mathbf{0}$

Theorem 4.3.9 If \mathbf{u} and \mathbf{v} are vectors in R^{3}, then:
(a) $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0 \quad[\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{u}]$
(b) $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})=0 \quad[\mathbf{u} \times \mathbf{v}$ is orthogonal to $\mathbf{v}]$

* Actually, w.(uxv) is called the vector triple product and it equals the determinant of a 3×3 matrix with rows $\mathrm{w}, \mathrm{u}, \mathrm{v}$.
* Thus $u .(u x v)=0, v .(u x v)=0$ since the matrix has two rows equal.
+ This means that uxv is orthogonal to u and v.
+ We need to use the right hand rule. See Fig 4.3.5.
x $\mathrm{i}, \mathrm{j}, \mathrm{k}$ satisfy interesting relations:
$+i x j=k, j x k=i, k x i=j$
$+j x i=-k, k x j=-i, i x k=-j$.
* The cross product is not commutative (actually anticommutative) and not associative.
$x i x(j x j)=i x 0=0 .(i x j) x j=k x j=i$.

Theorem 4.3.10 Let \mathbf{u} and \mathbf{v} be nonzero vectors in R^{3}, and let θ be the angle between these vectors.
(a) $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$
(b) The area A of the parallelogram that has \mathbf{u} and \mathbf{v} as adjacent sides is

$$
\begin{equation*}
A=\|\mathbf{u} \times \mathbf{v}\| \tag{14}
\end{equation*}
$$

