Chapter 6. Linear transformations

The purpose is to understand linear transformations, see various examples, kernel range, compositions and invertibility

6.1. Matrices as transformations

Definition 6.1.1 Given a set D of allowable inputs, a function f is a rule that associates a unique output with each input from D; the set D is called the domain of f. If the input is denoted by x, then the corresponding output is denoted by $f(x)$ (read, " f of x "). The output is also called the value of f at x or the image of x under f, and we say that f maps x into $f(x)$. It is common to denote the output by the single letter y and write $y=f(x)$. The set of all outputs y that results as x varies over the domain is called the range of f.

- A function is a set $\{(x, f(x)) \mid x$ in $D\}$ where $x=y$ means $f(x)=f(y)$
- Example:
- $T\left(x_{-} 1, x_{-} 2\right)=\left(x_{-} 1, x_{-} 2\right)$ or the identity map.
- $\mathrm{T}\left(\mathrm{x}_{\mathrm{\prime}} 1, \mathrm{x}_{-} 2\right)=\left(\mathrm{c}_{-} 1, \mathrm{c}_{-} 2\right)$ or a constant map.
- Example: T: $\mathrm{R}^{3}->\mathrm{R}^{3}$. $T\left(x_{-} 1, x_{-} 2, x_{-} 3\right)=\left(x_{-} 1 x_{-} 2, x_{-} 2 x_{-} 3, x_{-} 3 x_{-} 1\right)$.
- Example: Given 2×3 matrix $A=[[1,0,1]$, $[0,2,1]]$, define $T\left(x_{-} 1, x_{-} 2, x_{-} 3\right)=\left(x_{-} 1+x_{-} 3\right.$, $2 x _2+x$ _ 3 . Or T_A $(x)=A x$.
- Given a transformation $\mathrm{T}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$. A domain is R^{n} and codomain is R^{m}. The range is the actual set $T\left(R^{n}\right)$ in R^{m} which may or may not be the whole of R^{m}.
- An operator is a transformation $R^{n}->R^{n}$.

Matrix transformation

- Given A mxn matrix.
- We define T_A: $R^{n}->R^{m}$ by $x->A x$ or $T(x)=A x$.
- T_A: multiplication by A, or transformation A.
- A matrix transformation and the matrix itself is often considered a same object.
- Example: zero transformation T_O $(x)=0 x=0$.
- Identity operator T_I $(\mathrm{x})=\mathrm{Ix}=\mathrm{x}$.

Linear transformation

- The term linear was used to denote that the order of a polynomial was no more than one.
- Here, we will change meaning somewhat.
- A transformation will be linear if it sends O to O and each line to a line and planes to planes and so on.
- It turns out that this means that the transformation preserves addition and scalar multiplications and conversely.
- Superposition principle:

T(c_1v_1 $\left.+c_{-} 2 v_{-} 2+\ldots+c_{-} k v_{-} k\right)=$ $c_{-} 1 T\left(v_{-} 1\right)+c_{-} 2 T\left(v_{-} 2\right)+\ldots+c_{-} k T\left(v_{-} k\right)$.

- Actually this is linearity. Physicists use it in different way also.

Definition 6.1.2 A function $T: R^{n} \rightarrow R^{m}$ is called a linear transformation from R^{n} to R^{m} if the following two properties hold for all vectors \mathbf{u} and \mathbf{v} in R^{n} and for all scalars c :
(i) $T(c \mathbf{u})=c T(\mathbf{u})$
[Homogeneity property]
(ii) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
[Additivity property]
In the special case where $m=n$, the linear transformation T is called a linear operator on R^{n}.

- Example: matrix transformations are linear.

$$
\begin{aligned}
& \text { T_A(c_1 } \left.x_{-} 1+c_{-} 2 x_{-} 2\right)=A\left(c_{-} 1 x_{-} 1+c_{-} 2 x_{1} 2\right)= \\
& c_{-} 1 A x_{-} 1+c_{-} 2 A x_{-} 2=c_{-} 1 T\left(x_{-} 1\right)+c_{-} 2 T\left(x_{-} 2\right) \text {. }
\end{aligned}
$$

, Example: $2^{\text {nd }}$ or higher order transformations are nonlinear. They do not preserve the scalar multiplication or additions sometimes.

- $T\left(x_{-} 1, x_{-} 2, x_{-} 3\right)=\left(x_{-} 1 x_{-} 2, x_{-} 2 x_{-} 3, x_{-} 3 x_{-} 1\right)$.
- T(2x_1,2x_2,2x-3)=4T(x_1,x_2,x_3).
- $T\left(x_{-} 1+x^{\prime}-1, x_{-} 2+x^{\prime}-2, x_{-} 3+x^{\prime}-3\right)=\left(\left(x_{-} 1+x^{\prime}-1\right)\right.$
($x-2+x^{\prime}-2$), ($\left.x _2+x^{\prime}-2\right)\left(x-3+x^{\prime}-3\right),\left(x_{-} 3+x^{\prime} _3\right)$
($\left.x_{-} 1+x^{\prime}-1\right)$) is not $T\left(x_{-} 1, x_{-} 2, x_{-} 3\right)+T\left(x^{\prime}-1, x^{\prime}-2, x^{\prime}-3\right)$
for arbitrary choices.

Properties

Theorem 6.1.3 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then:
(a) $T(\mathbf{0})=\mathbf{0}$
(b) $T(-\mathbf{u})=-T(\mathbf{u})$
(c) $T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})$

- Proof: (a) $\mathrm{T}(\mathrm{O})=\mathrm{T}(0 \mathrm{v})=0 \mathrm{~T}(\mathrm{v})=0$.
- Example: A translation is not linear.

T(x)=x+x_0. O-> x_0.

All linear transformations are matrix transformations

- Suppose that T is liner: $\mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$.

。 $x=x_{-} 1 e_{-} 1+x_{-} 2 e_{-} 2+\ldots+x_{-} n e _n$.

- $T(x)=x_{-} 1 T\left(e_{-} 1\right)+x_{-} 2 T\left(e_{-} 2\right)+\ldots+x_{-} n T\left(e _n\right)$.
- $T(x)=\left[T\left(e_{-} 1\right), T\left(e_{-} 2\right), \ldots, T\left(e_{-} n\right)\right]\left[x_{-} 1, x_{-} 2, \ldots, x_{-}\right]^{\top}$.
- Let A be $\left[T\left(e_{-} 1\right), T\left(e_{-} 2\right), \ldots, T\left(e_{-} n\right)\right]$. Then $T(x)=A x$.

Theorem 6.1.4 Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation, and suppose that vectors are expressed in column form. If $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard unit vectors in R^{n}, and if \mathbf{x} is any vector in R^{n}, then $T(\mathbf{x})$ can be expressed as

$$
\begin{equation*}
T(\mathbf{x})=A \mathbf{x} \tag{13}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

- A is a (standard) matrix corresponding to T.
, T is a transformation corresponding to A .
- T is a transformation represented by A .
- T is the transformation A .
- $A=[T]=\left[T\left(e_{-} 1\right), T\left(e_{-} 2\right), \ldots, T\left(e_{-}\right)\right]$.
- $T(x)=[T] x$.
- Example: $T(x)=c x . c$ is some number. T is linear and is called a scaling operator.
- Then $[\mathrm{T}]=\mathrm{cl}$.

Representing transformations by equations....

- R^{n} coordinates (x_1,x_2,.., $x_{-} n$).
, R^{m} coordinates ($\mathrm{w}_{-} 1, \mathrm{w}_{-} 2, \ldots, \mathrm{w}_{\mathrm{l}} \mathrm{m}$)
- Then (w_1,w_2,...,w_m)=T(x_1,x_2,...,x_n) can be written:
- $w_{-} 1=a_{-} 11 x_{-} 1+a_{-} 12 x_{-} 2+\ldots+a_{-} 1 n x_{-} n$
- $w_{-} 2=a_{-} 21 x_{-} 1+a_{-} 22 x_{-} 2+\ldots+a_{-} 2 n \times _n=b_{-} 2$
-
- w_m=a_m1 x_1 +a_m2 x_2+...+a_mn x_n.
- Conversely, this equation defines $\mathrm{w}=\mathrm{Ax}$ and hence a linear transformation T_A.
- We can consider these identical definitions.

Rotations about the origin.

- Let us make a transformation that preserves length and send a vector to a vector rotated by an angle θ.
, e_1 -> $(\cos \theta, \sin \theta), e_{-} 2->(-\sin \theta, \cos \theta)$.
- Thus let [T] =[Te_1,Te_2]
$=[[\cos \theta,-\sin \theta],[\sin \theta, \cos \theta]]$.
- Thus R_ $\theta x=[[\cos \theta,-\sin \theta],[\sin \theta, \cos \theta]] x$.
- A rotation about nonorigin is not linear.

Reflection about a line through the origin.

- Take a line L through the origin having angle θ with the positive x-axis.
- T(e_1) is length 1 and has angle 2θ with the positive x-axis. $T\left(e_{-} 1\right)=(\cos 2 \theta, \sin 2 \theta)$.
- T(e_2) is length 1 and has angle 2($\pi / 2-\theta$) with the positive y-axis and has angle $(\pi / 2-2 \theta)$ with the positive x-axis. $\mathrm{T}\left(\mathrm{e} _2\right)=(\cos (\pi / 2-2 \theta), \sin (\pi / 2-2 \theta))$ $=(\sin 2 \theta,-\cos 2 \theta)$.
- $H_{-} \theta(x)=[[\cos 2 \theta, \sin 2 \theta],[\sin 2 \theta,-\cos 2 \theta]] x$
- Examples:
(a) $T(x, y)=(-y, x)$: reflection about the y-axis
(b) $T(x, y)=(x,-y)$: reflection about the x-axis.
- (c) $T(x, y)=(y, x)$: reflection about $y=x$ line.
- Example 13: $\theta=\pi / 3$.
- H_T/3(x)
$=[[\cos (2 \pi / 3), \sin (2 \pi / 3)],[\sin (2 \pi / 3),-\cos (2 \pi / 3)]$
$=[[-1 / 2,1 / \sqrt{ } 3],[1 / \sqrt{ } 3,1 / 2]] x$.

Orthogonal projection onto the line through the origin.

- Define $P_{-} \theta: R^{2}->R^{2}$ by sending a point x to a line L through O with angle θ with the positive x-axis.
- We find the formula by

P_ $\theta(x)-x=\left(H_{-} \theta(x)-x\right) / 2$.

- Thus, $\mathrm{P}_{-} \theta(\mathrm{x})=\mathrm{H} _\theta(\mathrm{x}) / 2+\mathrm{x} / 2=1 / 2\left(\mathrm{H}_{-} \theta+\mathrm{I}\right)(\mathrm{x})$.
, $P_{-} \theta=1 / 2\left(H_{-} \theta+I\right)$.

$$
\left[\begin{array}{cc}
(1+\cos 2 \theta) / 2 & (\sin 2 \theta) / 2 \\
(\sin 2 \theta) / 2 & (1+\cos 2 \theta) / 2
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]
$$

- The projection to the x-axis. $\Theta=0$. Thus the matrix is [[1,0],[0,0]]. (x,y)->(x,0).
The projection to the y-axis. $\Theta=\pi / 2$. Thus the matrix is $[[0,0],[0,1]]$. $(x, y)->(0, y)$.

