6.3. KERNEL AND RANGE

Kernel of a linear transformation

Sernel tells you how much is eliminated.

Definition 6.3.1 If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the set of vectors in \mathbb{R}^n that *T* maps into **0** is called the *kernel* of *T* and is denoted by ker(*T*).

• Example:

- O-operator: Then Rⁿ is the kernel.
- Identity operator: {O} is the kernel.
- Orthogonal projection to a plane: the perpendicular line through the origin.

Theorem 6.3.2 If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the kernel of T is a subspace of \mathbb{R}^n .

Proof: We can do scalar multiplications and vector additions in the kernel.

The kernel of a matrix transformation
 T_A is the set of x such that Ax=O.

Theorem 6.3.3 If A is an $m \times n$ matrix, then the kernel of the corresponding linear transformation is the solution space of $A\mathbf{x} = \mathbf{0}$.

Definition 6.3.4 If A is an $m \times n$ matrix, then the solution space of the linear system $A\mathbf{x} = \mathbf{0}$, or, equivalently, the kernel of the transformation T_A , is called the *null space* of the matrix A and is denoted by null(A).

Theorem 6.3.5 If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then T maps subspaces of \mathbb{R}^n into subspaces of \mathbb{R}^m .

 Proof: This follows from the fact that T preserves additions and scalar multiplications.

Range of a linear transformation

Definition 6.3.6 If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the *range* of *T*, denoted by ran(*T*), is the set of all vectors in \mathbb{R}^m that are images of at least one vector in \mathbb{R}^n . Stated another way, ran(*T*) is the image of the domain \mathbb{R}^n under the transformation *T*.

• Examples:

- For 0-operator: Range is {O}.
- For Id: the range is R^m.
- For orthogonal projections to a plane P: the rangle is the plane P.

Theorem 6.3.7 If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $\operatorname{ran}(T)$ is a subspace of \mathbb{R}^m .

Range of a matrix transformation

A mxn matrix
 T_A:Rⁿ->R^m.
 T_A(x)=Ax.

Theorem 6.3.8 If A is an $m \times n$ matrix, then the range of the corresponding linear transformation is the column space of A.

- See Example 5.
- Example 6: To check whether some vector is in the range.

Existence and Uniqueness

- Existence question: Is every vector in the codomain of T in the range? (If not, which subspace is the range.)
- Output of the sector of the

Definition 6.3.9 A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be *onto* if its range is the entire codomain \mathbb{R}^m ; that is, every vector in \mathbb{R}^m is the image of at least one vector in \mathbb{R}^n .

Definition 6.3.10 A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be *one-to-one* (sometimes written 1–1) if T maps distinct vectors in \mathbb{R}^n into distinct vectors in \mathbb{R}^m .

• Example: A rotation in \mathbb{R}^2 .

- This is one-to-one since it has a nonsingular matrix.
- This is also onto since the matrix has an inverse.
- Example: An orthogonal projection to a plane.
 - This is not one-to-one since many vectors go to O.
 - This is not onto since P is not all of the codomain.
- See Examples 9 and 10.

Theorem 6.3.11 If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the following statements are equivalent.

- (a) T is one-to-one.
- (*b*) $\ker(T) = \{\mathbf{0}\}.$

Proof: (a)->(b). T(O)=O. If T(x)=O, then x=O since T is one-to-one. Thus Ker(T)={O}.

 (b)->(a). Suppose x_1 is not x_2. If T(x_1)=T(x_2), then T(x_1-x_2)=O. Thus, x_1-x_2=O as ker(T)={O}. Therefore x_1=x_2.

One to one and onto from linear systems. T_A(x)=0 <-> Ax=0.

• $T_A(x) = b < -> Ax = b.$

Theorem 6.3.12 If A is an $m \times n$ matrix, then the corresponding linear transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if the linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Theorem 6.3.13 If A is an $m \times n$ matrix, then the corresponding linear transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is onto if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n .

These are solvable questions.

Theorem 6.3.14 If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator on \mathbb{R}^n , then T is one-to-one if and only if it is onto.

Proof: Theorem 4.4.7 (d) and (e) are equivalent. (d) <-> one-to-one
 (e) <-> onto.

Theorem 6.3.15 If A is an $n \times n$ matrix, and if T_A is the linear operator on \mathbb{R}^n with standard matrix A, then the following statements are equivalent.

- (a) The reduced row echelon form of A is I_n .
- (b) A is expressible as a product of elementary matrices.
- (c) A is invertible.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- (g) The column vectors of A are linearly independent.
- (h) The row vectors of A are linearly independent.
- (i) $\det(A) \neq 0$.
- (j) $\lambda = 0$ is not an eigenvalue of A.
- (k) T_A is one-to-one.
- (l) T_A is onto.