6.3. KERNEL AND RANGE

Kernel of a linear transformation

o Kernel tells you how much is eliminated.
Definition 6.3.1 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then the set of vectors in R^{n} that T maps into $\mathbf{0}$ is called the kernel of T and is denoted by $\operatorname{ker}(T)$.

- Example:
- O-operator: Then R^{n} is the kernel.
- Identity operator: $\{O\}$ is the kernel.
- Orthogonal projection to a plane: the perpendicular line through the origin.

Theorem 6.3.2 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then the kernel of T is a subspace of R^{n}.
o Proof: We can do scalar multiplications and vector additions in the kernel.
o The kernel of a matrix transformation $T_{_} A$ is the set of x such that $A x=O$.

Theorem 6.3.3 If A is an $m \times n$ matrix, then the kernel of the corresponding linear transformation is the solution space of $A \mathbf{x}=\mathbf{0}$.

Definition 6.3.4 If A is an $m \times n$ matrix, then the solution space of the linear system $A \mathbf{x}=\mathbf{0}$, or, equivalently, the kernel of the transformation T_{A}, is called the null space of the matrix A and is denoted by $\operatorname{null}(A)$.

Theorem 6.3.5 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then T maps subspaces of R^{n} into subspaces of R^{m}.
o Proof: This follows from the fact that T preserves additions and scalar multiplications.

Range of a linear transformation

Definition 6.3.6 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then the range of T, denoted by $\operatorname{ran}(T)$, is the set of all vectors in R^{m} that are images of at least one vector in R^{n}. Stated another way, $\operatorname{ran}(T)$ is the image of the domain R^{n} under the transformation T.
o Examples:

- For 0-operator: Range is $\{\mathrm{O}\}$.
- For Id: the range is R^{m}.
- For orthogonal projections to a plane P: the rangle is the plane P.

Theorem 6.3.7 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then $\operatorname{ran}(T)$ is a subspace of R^{m}.

Range of a matrix transformation

o A mxn matrix
o T_A:Rn->Rm.

- T_A(x)=Ax.

Theorem 6.3.8 If A is an $m \times n$ matrix, then the range of the corresponding linear transformation is the column space of A.
o See Example 5.
o Example 6: To check whether some vector is in the range.

Existence and Uniqueness

o Existence question: Is every vector in the codomain of T in the range? (If not, which subspace is the range.)
o Uniqueness question: Can two vectors map to a same vector under T?

Definition 6.3.9 A transformation $T: R^{n} \rightarrow R^{m}$ is said to be onto if its range is the entire codomain R^{m}; that is, every vector in R^{m} is the image of at least one vector in R^{n}.

Definition 6.3.10 A transformation $T: R^{n} \rightarrow R^{m}$ is said to be one-to-one (sometimes written 1-1) if T maps distinct vectors in R^{n} into distinct vectors in R^{m}.
o Example: A rotation in R^{2}.

- This is one-to-one since it has a nonsingular matrix.
- This is also onto since the matrix has an inverse.
o Example: An orthogonal projection to a plane.
- This is not one-to-one since many vectors go to O .
- This is not onto since P is not all of the codomain.
o See Examples 9 and10.

Theorem 6.3.11 If $T: R^{n} \rightarrow R^{m}$ is a linear transformation, then the following statements are equivalent.
(a) T is one-to-one.
(b) $\operatorname{ker}(T)=\{\mathbf{0}\}$.
o Proof: $(a)->(b) . T(O)=O$. If $T(x)=O$, then $x=O$ since T is one-to-one. Thus $\operatorname{Ker}(\mathrm{T})=\{\mathrm{O}\}$.
o (b)->(a). Suppose $x _1$ is not $x _2$. If $T\left(x _1\right)=T\left(x _2\right)$, then $T\left(x _1-x _2\right)=0$. Thus, $x_{_} 1-x_{2} 2=0$ as $\operatorname{ker}(T)=\{O\}$.
Therefore x_1=x_2.

One to one and onto from linear systems.

- T_A $(x)=0$ <-> $A x=0$.
- T_A $(x)=b$ <-> $A x=b$.

Theorem 6.3.12 If A is an $m \times n$ matrix, then the corresponding linear transformation $T_{A}: R^{n} \rightarrow R^{m}$ is one-to-one if and only if the linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Theorem 6.3.13 If A is an $m \times n$ matrix, then the corresponding linear transformation $T_{A}: R^{n} \rightarrow R^{m}$ is onto if and only if the linear system $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in R^{n}.
o These are solvable questions.

Theorem 6.3.14 If $T: R^{n} \rightarrow R^{n}$ is a linear operator on R^{n}, then T is one-to-one if and only if it is onto.
o Proof: Theorem 4.4.7 (d) and (e) are equivalent. (d) <-> one-to-one
o (e) <-> onto.

Theorem 6.3.15 If A is an $n \times n$ matrix, and if T_{A} is the linear operator on R^{n} with standard matrix A, then the following statements are equivalent.
(a) The reduced row echelon form of A is I_{n}.
(b) A is expressible as a product of elementary matrices.
(c) A is invertible.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b} in R^{n}.
(f) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every vector \mathbf{b} in R^{n}.
(g) The column vectors of A are linearly independent.
(h) The row vectors of A are linearly independent.
(i) $\operatorname{det}(A) \neq 0$.
(j) $\lambda=0$ is not an eigenvalue of A.
(k) T_{A} is one-to-one.
(l) T_{A} is onto.

