6.4. Composition and
invetibility of linear
transformations




Compositions of linear

transformations

» A composition of functions: f:X->Y,g:Y->Z,
we obtain gef:X->Z.

» If feg are linear, then gof is also linear.

» To verify, we need to show + and scalar
multiplications are preserved.

Theorem 6.4.1 IfT;: R" — R* and T»: R* — R™ are both linear transformations, then
(T, o T1): R — R™ is also a linear transformation.




Recall T(xX)=[T]x (p.272. (14))
(T_2T_1)(e_i)=T_2(T_1(e_i)=[T_2]([T_1]
(e_i))=([T_2][T_1D(e_i). (final step why?)
Thus [T_2T_1]=[T_2][T_1]. (why?)
Conversely, given matrices A and B,
T_BeT_A = T_BA. (Let T_2=T_B,T_1=T_A).
Example 1. R_O*R_®=R_(0+®). Verify using
computations

Example 2. H_6*H_®=R_2(®-0).

Example 3. T*S may not equal SeT. We can
see that from matrices T_AeT_B=T_AB.
T_BeT_A=T_BA. They would be equal iff
AB=BA.




Compositions of three or more
linear transformations.

4

4

"_1:Rn—>RmM T_2:Rm->R!I T_3:RI->Rk We define
"_3eT_2T_1:R"->Rk by

3T _2T_1(x)=T_3(T_2(T_1(x))).

» Since the compositions are associative, we
have (T_3¢T_2)eT_1=T_3¢(T_2°T_1). Thus we
can drop the parantheses.

y [T_3eT_2T_1]=[T_3][T_2][T_1].

o

(0]

[T_3e(T_2T_1)]=[T_3I[T_2T_1]1=[T_3](T_2][T_1D).
We use matrix multiplications are associative.

» T_CeT_BeT_A=T_CBA




» A classification:
- A rotation in R3 <-> det A = 1.

- A reflection composed with a rotation in R3 <-> det
A=-1.

» A product of series of rotations is a rotation.
» A product of series of reflections and

rotations with an even number of reflections
IS a rotation.

» A product of series of reflections and
rotations with an odd number of reflections is
a reflection composed with a rotation.




Yaw, pitch and roll

» Yaw: z-axis (up direction), pitch:x-axis (wing
direction), roll: y-axis (the direction of travel)
» Corresponding rotations are R_zx,R_ypB,R_xy.

» A composition of R_zo,R_yp,R_xy can be
achieved by a single rotation R_vd in some
direction of certain angle.

» Given these, we multiply them to get R_vd, and
then find the axis direction v and the rotation ©
(between 0 and ).

» See Example 5.

» Conversely, any rotation can be factored into
yaw, pitch, roll rotations.



Factoring linear operators ito
compositions

» We wish to factor a matrix into elementary
pieces so that we can understand it better.

» For example, a diagonal operator can be
understood as a composition of contraction
and expansion along individual axis. E

» We restrict to R2 only.

» Example 7: There are five types of elementary
matrices:




- (D) [[1,k],[0,1]] a shear in x-direction,

> (1) [[1,0],[k,1]] a shear in y-direction,

> (1) [[0,11,[1,0]] a reflection about x=y,

- (IV) [[k,0],[0,1]] compression or expansion for k=0.

- (V) [[1,0],[0,k]] same. For k < O, they are
compression or expansion followed by a reflection.

Theorem 6.4.4 If A is an invertible 2 x 2 matrix, then the corresponding linear operator
on R? is a composition of shears, compressions, and expansions in the directions of the
coordinate axes, and reflections about the coordinate axes and about the line y = x.

» Example 8: illustrates the factorization and
how one can understand a linear
transformation.




lnverse

» T:R"->R™, Suppose it is one-to-one.

» Let w be in the range of T.

» Then there is a unque x in R" s.t. T(x)=w.
» Let T-1(w) be defined as x.

» w=T(X) <-> x=T-1(w) for w in range(T).

» T-1: range(T) —> R".

» TT-! = Id on range (T)
» T-1T=Id on R".

Theorem 6.4.5 If T is a one-to-one linear transformation, then so is T .




Invertible linear operator

» If T is one-to-one and onto, then T-! exists
on the codomain, and is linear and one-to-
one and onto. (The linearity already shown
above. Other is just from the function theory)

» The matrix of T-! is the inverse of the matrix

of T.
o TITX)=[T"[T]x=x. [T '][T]=L.

Theorem 6.4.6 IfT is a one-to-one linear operator on R", then the standard matrix for T
is invertible and its inverse is the standard matrix for T~




[T-1]=[T]-".

(T_A)T=T_(A).

An inverse of a rotation in R? is a rotation
with opposite angle.

An inverse of a rotation in R3 is a rotation
with the same axis with an opposite angle or
an opposite axis with the same angle.

An inverse of an expansion by k in an axis
direction is a contraction by 1/k in the same
axis direction.

An inverse of a reflection is the same
reflection. H_6H_06 = 1.



Inverse and linear system

» y=AX given by a linear system as in (18).
» We have x=A-ly given by a linear system.

» We can obtain the second linear system by
the first ne by solving.

» Example 12.




Geometric properties of the
invertible linear operators in RZ.

» What happens to lines, segments, polygons
after acting by T?

Theorem 6.4.7 If T : R*> — R? is an invertible linear operator; then:

(a) The image of a line is a line.

(b) The image of a line passes through the origin if and only if the original line passes
through the origin.

(¢) The images of two lines are parallel if and only if the original lines are parallel.

(d) The images of three points lie on a line if and only if the original points lie on a line.

(e) The image of the line segment joining two points is the line segment joining the
images of those points.

Theorem 6.4.8 IfT: R> — R? is an invertible linear operator, then T maps the unit square
into a nondegenerate parallelogram that has a vertex at the origin and has adjacent sides
T (e1) and T (e2). The area of this parallelogram is |det(A)|, where A = [T (e;) T (ey)]is
the standard matrix for T.




