


  A composition of functions: f:X->Y,g:Y->Z, 
we obtain gf:X->Z.  

  If fg are linear, then gof is also linear.  
  To verify, we need to show + and scalar 

multiplications are preserved.  



  Recall T(x)=[T]x (p.272. (14)) 
  (T_2T_1)(e_i)= T_2(T_1(e_i))=[T_2]([T_1]

(e_i))=([T_2][T_1])(e_i). (final step why?)  
  Thus [T_2T_1]=[T_2][T_1]. (why?)  
  Conversely, given matrices A and B,  
  T_BT_A = T_BA. (Let T_2=T_B,T_1=T_A). 
  Example 1. R_θR_Φ=R_(θ+Φ). Verify using 

computations 
  Example 2. H_θH_Φ=R_2(Φ-θ). 
  Example 3. TS may not equal ST. We can 

see that from matrices T_AT_B=T_AB. 
T_BT_A=T_BA. They would be equal iff 
AB=BA.  



  T_1:Rn->Rm,T_2:Rm->Rl,T_3:Rl->Rk We define 
T_3T_2T_1:Rn->Rk by  

  T_3T_2T_1(x)=T_3(T_2(T_1(x))). 
  Since the compositions are associative, we 

have (T_3T_2)T_1=T_3(T_2T_1). Thus we 
can drop the parantheses.  

  [T_3T_2T_1]=[T_3][T_2][T_1].  
◦  [T_3(T_2T_1)]=[T_3][T_2T_1]=[T_3]([T_2][T_1]).  
◦  We use matrix multiplications are associative.  

  T_CT_BT_A=T_CBA 



  A classification:  
◦  A rotation in R3 <-> det A = 1.  
◦  A reflection composed with a rotation in R3 <-> det 

A = -1.  
   A product of series of rotations is a rotation.  
  A product of series of reflections and 

rotations with an even number of reflections 
is a rotation.  

  A product of series of  reflections and 
rotations with an odd number of reflections is 
a reflection composed with a rotation.   



  Yaw: z-axis (up direction), pitch:x-axis (wing 
direction), roll: y-axis (the direction of travel) 

  Corresponding rotations are R_zα,R_yβ,R_xγ.  
  A composition of R_zα,R_yβ,R_xγ can be 

achieved by a single rotation R_vδ in some 
direction of certain angle.  

  Given these, we multiply them to get R_vδ, and 
then find the axis direction v and the rotation δ 
(between 0 and π).  

  See Example 5.  
  Conversely, any rotation can be factored into 

yaw, pitch, roll rotations.  



  We wish to factor a matrix into elementary 
pieces so that we can understand it better.  

  For example, a diagonal operator can be 
understood as a composition of contraction 
and expansion along individual axis. E 

  We restrict to R2 only. 
  Example 7: There are five types of elementary 

matrices:  



◦  (I) [[1,k],[0,1]] a shear in x-direction,  
◦  (II) [[1,0],[k,1]] a shear in y-direction,  
◦  (III) [[0,1],[1,0]] a reflection about x=y,  
◦  (IV) [[k,0],[0,1]] compression or expansion for k≥0. 
◦  (V) [[1,0],[0,k]] same. For k < 0, they are 

compression or expansion followed by a reflection.  

  Example 8: illustrates the factorization and 
how one can understand a linear 
transformation. 



  T:Rn->Rm. Suppose it is one-to-one.  
  Let w be in the range of T.  
  Then there is a unque x in Rn s.t. T(x)=w.  
  Let T-1(w) be defined as x. 
  w=T(x) <-> x=T-1(w) for w in range(T).   
  T-1: range(T) -> Rn.  
  TT-1 = Id on range (T)  
  T-1T=Id on Rn. 



  If T is one-to-one and onto, then T-1 exists 
on the codomain, and is linear and one-to-
one and onto. (The linearity already shown 
above. Other is just from the function theory) 

   The matrix of T-1 is the inverse of the matrix 
of T.  
◦  T-1T(x)=[T-1][T]x=x. [T-1][T]=I.  



  [T-1]=[T]-1.  
  (T_A)-1=T_(A-1).  
  An inverse of a rotation in R2 is a rotation 

with opposite angle.  
  An inverse of a rotation in R3 is a rotation 

with the same axis with an opposite angle or 
an opposite axis with the same angle.  

  An inverse of an expansion by k in an axis 
direction is a contraction by 1/k in the same 
axis direction. 

  An inverse of a reflection is the same 
reflection. H_θH_θ = I. 



  y=Ax given by a linear system as in (18).  
  We have x=A-1y given by a linear system. 
  We can obtain the second linear system by 

the first ne by solving.  
  Example 12.  



  What happens to lines, segments, polygons 
after acting by T?  


