7_5. The rank theorem

Column rank = row rank.
A deep thought indeed!

The rank theorem

Theorem 7.5.1 (The Rank Theorem) The row space and column space of a matrix have the same dimension.

- Proof: Let T:Rn->R ${ }^{m}$ be defined by $T(x)=A x$. Then
- dim ranT=dim column space A.
- Ker T= null A.
- dim ran T + dim ker T = n.
- Choose a basis a_1,.., a_k in ker T. dim kerT =n.
- Expand a_k+1,..., a_n in R^{n} to a basis.
- $T\left(a _k+1\right)$..., $T\left(a _n\right)$ is independent. They span ranT.
- Thus $n-k=$ dim ran T.
- dim column space $A+n u l l i t y ~ A=n$.
- rank A+ nullity $A=n$. The Proof is done.
- Example 1:

Theorem 7.5.2 If A is an $m \times n$ matrix, then

$$
\begin{equation*}
\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right) \tag{3}
\end{equation*}
$$

- $\operatorname{rank}\left(\mathrm{A}^{\top}\right)+n u l l i t y\left(\mathrm{~A}^{\top}\right)=m$. $\left(\mathrm{A}^{\top}\right.$ is nxm matrix $)$
- $\operatorname{rank}(\mathrm{A})+\operatorname{nullity}\left(\mathrm{A}^{\mathrm{T}}\right)=\mathrm{m}$.
- Thus the dimension of four fundamental space is determined from a single number rank A.
- $\operatorname{dim} \operatorname{row} \mathrm{A}=\mathrm{k}, \operatorname{dim}$ null $\mathrm{A}=\mathrm{n}-\mathrm{k}, \operatorname{dim} \operatorname{col} \mathrm{A}=\mathrm{k}, \operatorname{dim}$ nullA ${ }^{\top}=m-k$.
- See Example 2.

The relationship between consistency and rank.

Theorem 7.5.3 (The Consistency Theorem) If $A \mathbf{x}=\mathbf{b}$ is a linear system of m equations in n unknowns, then the following statements are equivalent.
(a) $A \mathbf{x}=\mathbf{b}$ is consistent.
(b) \mathbf{b} is in the column space of A.
(c) The coefficient matrix A and the augmented matrix $[A \mid \mathbf{b}]$ have the same rank.

- Proof: (a) <->(b) by Theorem 3.5.5. (a)<->(c). Put both into ref. Then the number of the nonzero rows are the same for consistency.
- Example 3:

Definition 7.5.4 An $m \times n$ matrix A is said to have full column rank if its column vectors are linearly independent, and it is said to have full row rank if its row vectors are linearly independent.

Theorem 7.5.5 Let A be an $m \times n$ matrix.
(a) A has full column rank if and only if the column vectors of A form a basis for the column space, that is, if and only if $\operatorname{rank}(A)=n$.
(b) A has full row rank if and only if the row vectors of A form a basis for the row space, that is, if and only if $\operatorname{rank}(A)=m$.

- Proof: clear

Theorem 7.5.6 If A is an $m \times n$ matrix, then the following statements are equivalent.
(a) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(b) $A \mathbf{x}=\mathbf{b}$ has at most one solution for every \mathbf{b} in R^{m}.
(c) A has full column rank.

- Proof: (a)<->(b) Theorem 3.5.3.
- $(\mathrm{a})<->$ (c). Ax=0 can be written x_1a_1+...+x_na_n=0. The trival solution <-> a_i independent. <-> A has full column rank.
- Example 5.

Overdetermined and underdetermined

- A mxn-matrix.
- If $m>n$, then overdetermined.
- If m <n, then underdetermined.

Theorem 7.5.7 Let A be an $m \times n$ matrix.
(a) (Overdetermined Case) If $m>n$, then the system $A \mathbf{x}=\mathbf{b}$ is inconsistent for some vector \mathbf{b} in R^{m}.
(b) (Underdetermined Case) If $m<n$, then for every vector \mathbf{b} in R^{m} the system $A \mathbf{x}=\mathbf{b}$ is either inconsistent or has infinitely many solutions.

- Proof(a): m>n. The column vectors of A cannot span R^{m}.
- (b): m<n. The column vectors of A is linearly dependent. $A x=0$ has infinitely many solutions. Use Theorem 3.5.2.

Matrices of form $\mathrm{A}^{\top} \mathrm{A}$ and AA^{\top}.

- AAT . The ij-th entry is a_i.a_j. a_i column vector
- $A^{\top} A$. The $i j$-th entry is $r_{-} i . r_{-} j$. r_i row vector

Theorem 7.5.8 If A is an $m \times n$ matrix, then:
(a) A and $A^{T} A$ have the same null space.
(b) A and $A^{T} A$ have the same row space.
(c) A^{T} and $A^{T} A$ have the same column space.
(d) A and $A^{T} A$ have the same rank.

- Proof (a). null A is a subset of null $A^{\top} A$. (if $A x=0$, then $\left.A^{\top} A x=0\right)$.
- null $A^{\top} A$ is a subset of null A. (If $A^{\top} A v=0$, then v is orthogonal to every row vector of $A^{\top} A$. Since $A^{\top} A$ is symmeric, v is orthogonal to every column vectors of $A^{\top} A$. Thus, $\mathrm{v}^{\top} \mathrm{A}^{\top} \mathrm{Av}=0$. $(\mathrm{Av})^{\top} \mathrm{Av}=0$. Thus $\mathrm{Av} \cdot \mathrm{Av}=0$ and $\mathrm{Av}=0$.
- (b) By Theorem 7.3.5. The complements are the same.
- (c). The column space of A^{\top} is the row space of A.
- (d). From (b).

Theorem 7.5.9 If A is an $m \times n$ matrix, then:
(a) A^{T} and $A A^{T}$ have the same null space.
(b) A^{T} and $A A^{T}$ have the same row space.
(c) A and $A A^{T}$ have the same column space.
(d) A and $A A^{T}$ have the same rank.

Unifying theorem.

Theorem 7.5.10 If A is an $m \times n$ matrix, then the following statements are equivalent.
(a) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(b) $A \mathbf{x}=\mathbf{b}$ has at most one solution for every \mathbf{b} in R^{m}.
(c) A has full column rank.
(d) $A^{T} A$ is invertible.

Proof) (a)<->(b)<-> (c). Done before.
(c)<->(d). $A^{\top} A$ is an $n x n$ matrix. $A^{\top} A$ is invertible if
and only if $\mathrm{A}^{\top} \mathrm{A}$ is of full rank. By Theorem $7.5 .8(\mathrm{~d})$, this is if and only if A is full rank.

Theorem 7.5.11 If A is an $m \times n$ matrix, then the following statements are equivalent.
(a) $A^{T} \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(b) $A^{T} \mathbf{x}=\mathbf{b}$ has at most one solution for every vector \mathbf{b} in R^{n}.
(c) A has full row rank.
(d) $A A^{T}$ is invertible.

- Example 7:

