7.6 The pivot theorem

Basis problem

- Now address the problem of extracting a basis in S for the Span(S).
- The row operations changes the column spaces.
- If A and B are row equivalent, then $A x=0, B x=0$ have the same set of solutions.
- $A x=0$ <-> x_1a_1+x_2a_2+...+x_na_n=0.
- $B x=0<->x _1 b _1+x _2 b _2+. .+x _n b _n=0$.

Theorem 7.6.1 Let A and B be row equivalent matrices.
(a) If some subset of column vectors from A is linearly independent, then the corresponding column vectors from B are linearly independent, and conversely.
(b) If some subset of column vectors from B is linearly dependent, then the corresponding column vectors from A are linearly dependent, and conversely. Moreover, the column vectors in the two matrices have the same dependency relationships.

- Proof: If necessary form A^{\prime} from the set of column vectors of A.
- Thus our strategy is to ref A and choose the pivot columns as basis and transfer back to A.
- Example 1.

Pivot theorem

Definition 7.6.2 The column vectors of a matrix A that lie in the column positions where the leading 1 's occur in the row echelon forms of A are called the pivot columns of A.

Theorem 7.6.3 (The Pivot Theorem) The pivot columns of a nonzero matrix A form a basis for the column space of A.

- Proof: We see that leading 1 s are at every position in the pivot column vectors.

Pivot algorithm

Algorithm 1 If W is the subspace of R^{n} spanned by $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{s}\right\}$, then the following procedure extracts a basis for W from S and expresses the vectors of S that are not in the basis as linear combinations of the basis vectors.

Step 1. Form the matrix A that has $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{s}$ as successive column vectors.
Step 2. Reduce A to a row echelon form U, and identify the columns with the leading 1 's to determine the pivot columns of A.
Step 3. Extract the pivot columns of A to obtain a basis for W. If appropriate, rewrite these basis vectors in comma-delimited form.
Step 4. If it is desired to express the vectors of S that are not in the basis as linear combinations of the basis vectors, then continue reducing U to obtain the reduced row echelon form R of A.
Step 5. By inspection, express each column vector of R that does not contain a leading 1 as a linear combination of preceding column vectors that contain leading 1's. Replace the column vectors in these linear combinations by the corresponding column vectors of A to obtain equations that express the column vectors of A that are not in the basis as linear combinations of basis vectors.

Example 2

- Given W=span(S). S finite.
- (a) Extract basis in S.
- (b) Express other vectors in S

Basis for the fundamental spaces

- A mxn -> U upper echeton -> R ref.
- 1. $\operatorname{row}(A)$: basis nonzero rows of U or R.
- 2. $\operatorname{col}(\mathrm{A})$: pivot columns of A .
- 3. null(A): canonical solutions from $\mathrm{Rx}=0$.
- 4. null(A^{\top}): Solve $\mathrm{A}^{\mathrm{T}} \mathrm{x}=0$.
- A mxn rank k. dim null(A^{\top})= m-k. Why? If $\mathrm{k}=\mathrm{m}, \operatorname{dim}=0$.
- Another method using row operations only.

Algorithm 2 If A is an $m \times n$ matrix with rank k, and if $k<m$, then the following procedure produces a basis for null $\left(A^{T}\right)$ by elementary row operations on A.
Step 1. Adjoin the $m \times m$ identity matrix I_{m} to the right side of A to create the partitioned matrix $\left[A \mid I_{m}\right]$.
Step 2. Apply elementary row operations to $\left[A \mid I_{m}\right]$ until A is reduced to a row echelon form U, and let the resulting partitioned matrix be $[U \mid E]$.
Step 3. Repartition $[U \mid E]$ by adding a horizontal rule to split off the zero rows of U. This yields a matrix of the form

$$
\begin{gathered}
{\left[\begin{array}{c:c}
V & E_{1} \\
\hdashline 0 & E_{2}
\end{array}\right] \begin{array}{c}
k \\
n \\
n
\end{array} \quad m-k}
\end{gathered}
$$

where the margin entries indicate sizes.
Step 4. The row vectors of E_{2} form a basis for null $\left(A^{T}\right)$.

- Example 3:

Column-row factorization

Theorem 7.6.4 (Column-Row Factorization) If A is a nonzero $m \times n$ matrix of rank k, then A can be factored as

$$
\begin{equation*}
A=C R \tag{1}
\end{equation*}
$$

where C is the $m \times k$ matrix whose column vectors are the pivot columns of A and R is the $k \times n$ matrix whose row vectors are the nonzero rows in the reduced row echelon form of A.

- Proof: EA=R_0. E mxm matrix a product of elementary matrices.
- R_0 ref of A. mxn-matrix
- Let R be the kxn-matrix of nonzero rows of R .
- Then let $\mathrm{E}^{-1}=[\mathrm{C} \mid \mathrm{D}] \mathrm{C}$ mxk. $\mathrm{D} \quad \mathrm{mx}(\mathrm{m}-\mathrm{k})$

$$
R_{0}=\left[\frac{R}{O}\right]
$$

- Proof continued:
- $\mathrm{A}=\mathrm{E}^{-1} \mathrm{R}=$

$$
[C \mid D]\left[\frac{R}{O}\right]=C R+D O=C R
$$

- C consists of pivot columns of A.
- Multiplying by E-1 to R_0 returns to A.
- Restrict to pivot columns of R -> pivot columns of A .
- Pivot columns of R form I of kxk size.
- CR restricted $\mathrm{Cl}=\mathrm{C}$. Thus C is the pivot columns of A .
- Example 4.

Column-row expansion

- We can write the above as the sum of vector products...

Theorem 7.6.5 (Column-Row Expansion) If A is a nonzero matrix of rank k, then A can be expressed as

$$
\begin{equation*}
A=\mathbf{c}_{1} \mathbf{r}_{1}+\mathbf{c}_{2} \mathbf{r}_{2}+\cdots+\mathbf{c}_{k} \mathbf{r}_{k} \tag{4}
\end{equation*}
$$

where $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{k}$ are the successive pivot columns of A and $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{k}$ are the successive nonzero row vectors in the reduced row echelon form of A.

