7.7. The projection theorem and its implications

Orthogonal projections, formula

Orthogonal projections to a line in R^{2}

- Let us obtain a formular for projection to a line containing a nonzero vector a.
- $x=x _1+x _1, x_{-} 1=k a . x _2$ is orthogonal to a.
- (x-ka).a=0. x.a-k(a.a)=0. k=x.a/||a|| ${ }^{2}$.
- $x_{-}=\left(x . a /||a||^{2}\right) a$.
- Proj_a $(x)=\left(x . a /||a||^{2}\right) a$.
- Example 1: The matrix expression.

Orthogonal projections onto a line through O in R^{n}.

Theorem 7.7.1 If \mathbf{a} is a nonzero vector in R^{n}, then every vector \mathbf{x} in R^{n} can be expressed in exactly one way as

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \tag{6}
\end{equation*}
$$

where \mathbf{x}_{1} is a scalar multiple of \mathbf{a} and \mathbf{x}_{2} is orthogonal to \mathbf{a} (and hence to \mathbf{x}_{1}). The vectors \mathbf{x}_{1} and \mathbf{x}_{2} are given by the formulas

$$
\begin{equation*}
\mathbf{x}_{1}=\frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \quad \text { and } \quad \mathbf{x}_{2}=\mathbf{x}-\mathbf{x}_{1}=\mathbf{x}-\frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \tag{7}
\end{equation*}
$$

- Proof: Omit

Definition 7.7.2 If a is a nonzero vector in R^{n}, and if \mathbf{x} is any vector in R^{n}, then the orthogonal projection of \mathbf{x} onto $\operatorname{span}\{\mathbf{a}\}$ is denoted by $\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ and is defined as

$$
\begin{equation*}
\operatorname{proj}_{\mathbf{a}} \mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \tag{11}
\end{equation*}
$$

The vector $\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is also called the vector component of \mathbf{x} along \mathbf{a}, and $\mathbf{x}-\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is called the vector component of \mathbf{x} orthogonal to a.

Projection operator in R^{n}

- $\mathrm{T}(\mathrm{x})=$ proj $-\mathrm{a}(\mathrm{x})=\left(\mathrm{x} \cdot \mathrm{a} /||\mathrm{a}||^{2}\right) \mathrm{a}$
- Orthogonal projection of R^{n} onto $\operatorname{span\{ a\} .~}$

Theorem 7.7.3 If \mathbf{a} is a nonzero vector in R^{n}, and if \mathbf{a} is expressed in column form, then the standard matrix for the linear operator $T(\mathbf{x})=\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is

$$
\begin{equation*}
P=\frac{1}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a a}^{T} \tag{16}
\end{equation*}
$$

This matrix is symmetric and has rank 1.

- Proof: T(e_j)=((e_j.a)/||a||²)a=(a_j/||a||²)a.
- $P=\left[a _1 a\left|a _2 a\right| . . . \mid a _n a\right] /||a||^{2}=a\left[a _1, a _2, . ., a _n\right] /||a||^{2}=$
- $\mathrm{a} \mathrm{a}^{\top} / a^{\top} \mathrm{a}$.
- If a is a unit vector u. Then $P=u u^{\top}$.
- Example 4. P_0 again
- Example 5.

Projection theorem

Theorem 7.7.4 (Projection Theorem for Subspaces) If W is a subspace of R^{n}, then every vector \mathbf{x} in R^{n} can be expressed in exactly one way as

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \tag{20}
\end{equation*}
$$

where \mathbf{x}_{1} is in W and \mathbf{x}_{2} is in W^{\perp}.

- Proof: Let $\left\{\mathbf{w} _1, \ldots, w _k\right\}$ be the basis of W. Let M be the $n x k$ matrix with columns w_1,w_2,..,w_k. $k \leq n$.
- W column space of M. Wc null space of M^{\top}.
- Write $x=x _1+x _2, x _1$ in W and $x _2$ in Wc.
- $x _1=M v$ and $M^{\top}\left(x _2\right)=0$ or $M^{\top}\left(x-x _2\right)=0$.
- $M^{\top}(x-M v)=0$.
- This has a unique solution <-> x_1,x_2 exist and are unique.
- Rewrite $M^{\top} M v=M^{\top} x$.
- $M^{\top} M$ is kxk-matrix
- M has a full column rank as w_1,..,w_k are independent.
- $M^{\top} M$ is invertible by Theorem 7.5.10.
- $\mathrm{v}=\left(M^{\top} M\right)^{-1} M^{\top} x$.
- $x=$ proj_W $(x)+\operatorname{proj} W^{\mathrm{C}}(x)$.
- Since proj_W(x)=x_1=Mv, we have

Theorem 7.7.5 If W is a nonzero subspace of R^{n}, and if M is any matrix whose column vectors form a basis for W, then

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{x}=M\left(M^{T} M\right)^{-1} M^{T} \mathbf{x} \tag{25}
\end{equation*}
$$

for every column vector \mathbf{x} in R^{n}.

- $T(x)=$ Proj_W $(x)=M\left(M^{\top} M\right)^{-1} M^{\top}(x)$.
- Matrix is $P=M\left(M^{\top} M\right)^{-1} M^{\top}$
- Orthogonal projection of R^{n} to W .
- This extends the previous formula.
- Example 6.

Condition for orthogonal projection

- $P^{\top}=\left(M\left(M^{\top} M\right)^{-1} M^{\top}\right)^{\top}=M\left(\left(M^{\top} M\right)^{-1}\right)^{\top} M^{\top}=M\left(M^{\top} M\right)^{-1} M^{\top}=P$.
- $P^{2}=M\left(M^{\top} M\right)^{-1} M^{\top}\left(M^{\top}\left(M^{\top} M\right)^{-1} M^{\top}=M\left(M^{\top} M\right)^{-1}\left(M^{\top} M\right)\left(M^{\top} M\right)^{-1} M^{\top}\right.$ $=M\left(M^{\top} M\right)^{-1} M^{\top}=P$.
- $P^{2}=P$.

Theorem 7.7.6 An $n \times n$ matrix P is the standard matrix for an orthogonal projection of R^{n} onto a k-dimensional subspace of R^{n} if and only if P is symmetric, idempotent, and has rank k. The subspace W is the column space of P.

Strang diagrams

- Ax=b. A mxn matrix
- row(A), null(A) are orthogonal complements
- $\operatorname{col}(\mathrm{A})$ and null(A^{\top}) are orthogonal complements.
- $x=x _r o w(A)+x _n u l l(A)$.
- b=b_col(A)+b_null(A $\left.{ }^{\top}\right)$.
- $\mathrm{Ax}=\mathrm{b}$ is consistent iff $\mathrm{b} _$null $\left(\mathrm{A}^{\mathrm{T}}\right)=0$.
- See Fig. 7.7.6.

Theorem 7.7.7 Suppose that A is an $m \times n$ matrix and \mathbf{b} is in the column space of A.
(a) If A has full column rank, then the system $A \mathbf{x}=\mathbf{b}$ has a unique solution, and that solution is in the row space of A.
(b) If A does not have full column rank, then the system $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions, but there is a unique solution in the row space of A. Moreover, among all solutions of the system, the solution in the row space of A has the smallest norm.

- Proof: (a) If A has a full rank, Theorem 7.5.6 implies $\mathrm{Ax}=\mathrm{b}$ has a unique solution or is inconsistent. Since b is in $\operatorname{col}(\mathrm{A})$, it is consistent.
- (b). Theorem 7.5.6 implies $\mathrm{Ax}=0$ has infinitely many solutions. Smallest norm -> omit.

Double perp theorem.

Theorem 7.7.8 (Double Perp Theorem) If W is a subspace of R^{n}, then $\left(W^{\perp}\right)^{\perp}=W$.

- Proof: Show W is a subset of (Wc)c:
- Suppose w is in W. Then w is perp to every a in Wc. This means that w is in $\left(W^{c}\right)^{c}$.
- Show (Wc) ${ }^{c}$ is a subset of W.
- Let w be in ($\left.W^{c}\right)^{c}$.
- Write w=w_1+w_2, w_1 in W, w_2 in Wc.
- w_2.w=0.
- (w_2.w_1)+(w_2.w_2)=0. w_2.w_2=0 -> w_2 =0.

Orthogonal projection to Wc

- Proj_Wc $(x)=x-$ proj_ $W(x)=\mid x-P x=(1-P) x$.
- Thus the matrix of Proj_W ${ }^{c}$ is $I-P=I-M\left(M^{\top} M\right)^{-1} M^{\top}$.
- I-P is also symmetric and idempotent.
- Rank(I-P)=n-rank P.

