7.9. Orthonormal basis and the Gram-Schmidt Process

We can find an orthonormal basis for any vector space using
Gram-Schmidt process. Such bases are very useful.
Orthogonal projections can be computed using dot products Fourier series, wavelets, and so on from these.

Orthogonal basis. Orthonormal basis

- Orthogonal basis: A basis that is an orthogonal set.
- Orthonormal basis: A basis that is an orthonrmal set.
- Example 1: $\{(0,1,0),(1,0,1),(-1,0,1)\}$
- Example 2: $\{(3 / 7,-6 / 7,2 / 7),(2 / 7,3 / 7,6 / 7)$, (6/7,2/7,-3/7)\}
- Example 3: The standard basis of R^{n}.

Theorem 7.9.1 An orthogonal set of nonzero vectors in R^{n} is linearly independent.

- Proof: v_1,v_2,..,v_k Orthogonal set.
- Suppose c_1v_1+c_2v_2+...+c_kv_k=0.
- Dot with $\mathrm{v}_{-} 1 . \mathrm{c}_{\mathrm{-}} 1 \mathrm{v} _1 . \mathrm{v}_{-} 1=0$. Since $\mathrm{v} _1$ has nonzero length, c_1=0.
- Do for each $\mathrm{v}_{\mathrm{j}} \mathrm{j}$. Thus all $\mathrm{c}_{-} \mathrm{j}=0$.
- Thus an orthogonal (orthonormal) set of n nonzero vectors is a basis always.

How to find these?

Orthogonal projections using orthonormal projections

- Proj_W $x=M\left(M^{\top} M\right)^{-1} M^{\top}(x)$.
- Recall M has columns that form a basis of W.
- Suppose we chose the orthonormal basis of W.
- $M^{\top} M=1$ by orthonormality.
- Thus Proj_w(x)=MMTx.
- $P=M M^{\top}$.
- Example 4.

Theorem 7.9.2

(a) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthonormal basis for a subspace W of R^{n}, then the orthogonal projection of a vector \mathbf{x} in R^{n} onto W can be expressed as

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{x}=\left(\mathbf{x} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}+\left(\mathbf{x} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{2}+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{k}\right) \mathbf{v}_{k} \tag{7}
\end{equation*}
$$

(b) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal basis for a subspace W of R^{n}, then the orthogonal projection of a vector \mathbf{x} in R^{n} onto W can be expressed as

$$
\begin{equation*}
\operatorname{proj}_{W} \mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\mathbf{x} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}+\cdots+\frac{\mathbf{x} \cdot \mathbf{v}_{k}}{\left\|\mathbf{v}_{k}\right\|^{2}} \mathbf{v}_{k} \tag{8}
\end{equation*}
$$

- Proof: (a) $M=\left[v_{-} 1, v_{-} 2, . ., v_{-} k\right]$.

$$
\begin{aligned}
& \operatorname{proj}_{W} x=M\left(M^{T} x\right)=\left[v_{1}, v_{2}, \ldots, v_{k}\right]\left[\begin{array}{c}
v_{1}^{T} \\
v_{2}^{T} \\
\vdots \\
v_{k}^{T}
\end{array}\right] x \\
& =\left[v_{1}, v_{2}, \ldots, v_{k}\right]\left[\begin{array}{c}
v_{1}^{T} x \\
v_{2}^{T} x \\
\vdots
\end{array}\right]=\left(x . v_{1}\right) v_{1}+\left(x . v_{2}\right) v_{2}+\ldots+\left(x . v_{k}\right) v_{k}
\end{aligned}
$$

- Proof(b): Divide by the lengths to obtain an orthonormal basis of W. Apply (a).
- Note: Even if W=Rn, one can use the same formula.

Theorem 7.9.3 If P is the standard matrix for an orthogonal projection of R^{n} onto a subspace of R^{n}, then $\operatorname{tr}(P)=\operatorname{rank}(P)$.

- Proof: $P=M M^{\top}=v_{-} 1 v_{-} 1^{\top}+\ldots+v^{\prime} k v _k^{\top}$.
- trP=tr(v_1v_1 ${ }^{\mathrm{T}}+\ldots . .+\operatorname{tr}\left(\mathrm{v} _k v _k^{\top}\right)=\mathrm{v} _1 . v _1+\ldots+\mathrm{v} _k . v _k=k$
- This by Formula 27 in Sec 3.1.
- Example 7: 13/49+45/49+40/49=2 (Example 4)

Linear combinations of orthonormal basis vectors.

- If w is in W, then proj_W(w)=w. In particular, if $W=R^{n}$, and w any vector, we have

Theorem 7.9.4

(a) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthonormal basis for a subspace W of R^{n}, and if \mathbf{w} is a vector in W, then

$$
\begin{equation*}
\mathbf{w}=\left(\mathbf{w} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}+\left(\mathbf{w} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{2}+\cdots+\left(\mathbf{w} \cdot \mathbf{v}_{k}\right) \mathbf{v}_{k} \tag{11}
\end{equation*}
$$

(b) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal basis for a subspace W of R^{n}, and if \mathbf{w} is a vector in W, then

$$
\begin{equation*}
\mathbf{w}=\frac{\mathbf{w} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\mathbf{w} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}+\cdots+\frac{\mathbf{w} \cdot \mathbf{v}_{k}}{\left\|\mathbf{v}_{k}\right\|^{2}} \mathbf{v}_{k} \tag{12}
\end{equation*}
$$

- The above formula is very useful to find "coordinates" given an orthonormal basis.
- Example 8:

Gram-Schmidt orthogonalization process

- W a nonzero subspace $\left\{\mathrm{w} _1, \mathrm{w} _2, . ., \mathrm{w} _k\right\}$ Any basis
- We will produce orthogonal basis $\left\{\mathrm{v} _1, \mathrm{v}, 2, \ldots, \mathrm{v} _\mathrm{k}\right\}$
- Let v_1=w_1.
- v_2 = w_2 - proj_w_1(w_2) = w_1 -v_1(w_2.v_1)/||v_1|| ${ }^{2}$.
- $\mathrm{v} _2$ is not zero. (Otherwise, w_2=proj_w_1(w_2). w_1//w_2).
- $\left\{v_{-} 1, \mathrm{v}_{-} 2\right\}$ orthogonal set. Let $\mathrm{W}_{-} 2=$ Span $\left\{\mathrm{v}_{-} 1, \mathrm{v}_{-} 2\right\}$

$-\mathrm{v}-2\left(\mathrm{w} _3 . \mathrm{v} _2\right) /$ / $\left.\left|\mathrm{v} _2\right|\right|^{2}$.
- $v^{2} 3$ is nonzero since $w_{-} 3$ is not in $W_{-} 2$ by independence of $\left\{\mathrm{w}_{-} 1, \mathrm{w}_{-} 2, \mathrm{w}_{-} 3\right\}$. $\mathrm{v}_{-} 3$ is orthogonal to $\mathrm{v}_{-} 1$ and $\mathrm{v}_{-} 2$.
- We obtained orthogonal set of $\mathrm{v}_{-} 1, \mathrm{v}_{-} 2, \ldots, \mathrm{v}_{\mathrm{l}} \mathrm{l}$. Let W_l=Span\{v_1,..., v_l\}.
- $\mathrm{v}_{\mathrm{w}} \mathrm{l}+1=\mathrm{w}_{-} \mathrm{l}+1$ - proj_W_l(w_l+1)= $w_{-} l+1-v_{-} 1\left(w_{-} l+1 . v_{-} 1\right) /\left|\left|v_{-} 1\right|\right|^{2}-. . .-v_{-}\left(w_{-} l+1 . v_{-}\right) /| |$ v_l|l ${ }^{2}$
- Then $v_{-} l+1$ is not 0 since $w_{-} l+1$ is not in W_l.
- $\mathrm{v}_{-} l+1$ is orthogonal to $\mathrm{v}_{-} 1, . ., \mathrm{v}_{-} \mathrm{l}$.
- v_i.(w_l+1 -- v_1(w_l+1.v_1)/||v_1|| ${ }^{2-. . .}$ $-v_{-} l\left(w-l+1 . v_{-} l\right) /\left|\left|v_{-} l\right|\right|^{2}$
$=v_{-} i . w_{-} l+1-v_{-} i . v_{-} i\left(w_{-} l+1 . v_{-} i\right) /\left|\left|v_{-} i\right|\right|^{2}=0$ for $i=1, . ., l$.
- Finally, we achieve v_1,v_2,.., v_k.
- We can normalize to obtain an orthonormal basis.
- Example 9: $(0,0,0,1),(0,0,1,1),(0,1,1,1),(1,1,1,1)$.
- Example 10: $x+y+z+2 t=0,2 x+y+z+t=0$.
- Properties:

Theorem 7.9.6 If $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ is a basis for a nonzero subspace of R^{n}, and if $S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is the corresponding orthogonal basis produced by the Gram-Schmidt process, then:
(a) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{j}\right\}$ is an orthogonal basis for $\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{j}\right\}$ at the j th step.
(b) \mathbf{v}_{j} is orthogonal to $\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{j-1}\right\}$ at the j th step $(j \geq 2)$.

Extending the orthonormal set to orthonormal basis.

Theorem 7.9.7 If W is a nonzero subspace of R^{n}, then:
(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W.
(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.

- Proof $(a):$ Given $v _1, . ., \mathrm{v} _k$. Add v_k+1 orthogonal to Span\{v_1,.., v_k\}. Add v_k+2 orthogonal to Span\{v_1,v_2,.., v_k,v_k+1\}. By induction....
- Proof (b): see book

