7.9. Orthonormal basis and the Gram-Schmidt Process

We can find an orthonormal basis for any vector space using Gram-Schmidt process. Such bases are very useful.Orthogonal projections can be computed using dot products Fourier series, wavelets, and so on from these.

Orthogonal basis. Orthonormal basis

- Orthogonal basis: A basis that is an orthogonal set.
- Orthonormal basis: A basis that is an orthonrmal set.
- Example 1: {(0,1,0), (1,0,1), (-1,0,1)}
- Example 2: {(3/7,-6/7,2/7),(2/7,3/7,6/7), (6/7,2/7,-3/7)}
- Example 3: The standard basis of Rⁿ.

Theorem 7.9.1 An orthogonal set of nonzero vectors in \mathbb{R}^n is linearly independent.

- Proof: v_1,v_2,...,v_k Orthogonal set.
 - Suppose c_1v_1+c_2v_2+...+c_kv_k=0.
 - Dot with v_1. c_1v_1.v_1=0. Since v_1 has nonzero length, c_1=0.
 - Do for each v_js. Thus all c_j=0.
- Thus an orthogonal (orthonormal) set of n nonzero vectors is a basis always.

How to find these?

Orthogonal projections using orthonormal projections

- Proj_W x = $M(M^TM)^{-1}M^T(x)$.
- Recall M has columns that form a basis of W.
- Suppose we chose the orthonormal basis of W.
- M^TM=I by orthonormality.
- Thus $Proj_w(x)=MM^Tx$.
- $P=MM^T$.
- Example 4.

Theorem 7.9.2

(a) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then the orthogonal projection of a vector \mathbf{x} in \mathbb{R}^n onto W can be expressed as

$$\operatorname{proj}_{W} \mathbf{x} = (\mathbf{x} \cdot \mathbf{v}_{1})\mathbf{v}_{1} + (\mathbf{x} \cdot \mathbf{v}_{2})\mathbf{v}_{2} + \dots + (\mathbf{x} \cdot \mathbf{v}_{k})\mathbf{v}_{k}$$
(7)

(b) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n , then the orthogonal projection of a vector \mathbf{x} in \mathbb{R}^n onto W can be expressed as

$$\operatorname{proj}_{W} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\mathbf{x} \cdot \mathbf{v}_{2}}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\mathbf{x} \cdot \mathbf{v}_{k}}{\|\mathbf{v}_{k}\|^{2}} \mathbf{v}_{k}$$
(8)

• Proof: (a) M=[v_1,v_2,..,v_k].

$$proj_{W}x = M(M^{T}x) = [v_{1}, v_{2}, ..., v_{k}] \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{k}^{T} \end{bmatrix} x$$

$$= [v_1, v_2, ..., v_k] \begin{vmatrix} v_1^T x \\ v_2^T x \\ \vdots \\ v_k^T x \end{vmatrix} = (x v_1) v_1 + (x v_2) v_2 + ... + (x v_k) v_k$$

 Proof(b): Divide by the lengths to obtain an orthonormal basis of W. Apply (a).

• Note: Even if W=Rⁿ, one can use the same formula.

Theorem 7.9.3 If *P* is the standard matrix for an orthogonal projection of \mathbb{R}^n onto a subspace of \mathbb{R}^n , then $\operatorname{tr}(P) = \operatorname{rank}(P)$.

- Proof: $P=MM^{T}=v_{1}v_{1}^{T}+...+v_{k}v_{k}^{T}$.
 - $trP=tr(v_1v_1^{T})+...+tr(v_kv_k^{T})=v_1.v_1+...+v_k.v_k=k$
 - This by Formula 27 in Sec 3.1.
- Example 7: 13/49+45/49+40/49=2 (Example 4)

Linear combinations of orthonormal basis vectors.

 If w is in W, then proj_W(w)=w. In particular, if W=Rⁿ, and w any vector, we have

Theorem 7.9.4

(a) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , and if \mathbf{w} is a vector in W, then

$$\mathbf{w} = (\mathbf{w} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{w} \cdot \mathbf{v}_2)\mathbf{v}_2 + \dots + (\mathbf{w} \cdot \mathbf{v}_k)\mathbf{v}_k$$
(11)

(b) If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n , and if \mathbf{w} is a vector in W, then

$$\mathbf{w} = \frac{\mathbf{w} \cdot \mathbf{v}_1}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \frac{\mathbf{w} \cdot \mathbf{v}_2}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 + \dots + \frac{\mathbf{w} \cdot \mathbf{v}_k}{\|\mathbf{v}_k\|^2} \mathbf{v}_k$$
(12)

- The above formula is very useful to find "coordinates" given an orthonormal basis.
- Example 8:

Gram-Schmidt orthogonalization process

- W a nonzero subspace {w_1,w_2,..,w_k} Any basis
- We will produce orthogonal basis {v_1,v_2,..,v_k}
- Let v_1=w_1.
- $v_2 = w_2 proj_w_1(w_2) = w_1 v_1(w_2.v_1) / ||v_1||^2$.
 - v_2 is not zero. (Otherwise, w_2=proj_w_1(w_2). w_1//w_2).
 - {v_1,v_2} orthogonal set. Let W_2=Span{v_1,v_2}
- $v_3 = w_3 proj_W_2(w_3) = w_3 v_1(w_3.v_1) / ||v_1||^2$ - $v_2(w_3.v_2) / ||v_2||^2$.
- v_3 is nonzero since w_3 is not in W_2 by independence of {w_1,w_2,w_3}. v_3 is orthogonal to v_1 and v_2.

- We obtained orthogonal set of v_1,v_2,...,v_l. Let W_l=Span{v_1,...,v_l}.
- v_l+1 = w_l+1 proj_W_l(w_l+1)= w_l+1 - v_1(w_l+1.v_1)/||v_1||²-...-v_l(w_l+1.v_l)/|| v_l||²
- Then v_l+1 is not 0 since w_l+1 is not in W_l.
- v_l+1 is orthogonal to v_1,..,v_l.
 - v_i.(w_l+1 -- v_1(w_l+1.v_1)/||v_1||²-...
 -v_l(w_l+1.v_l)/||v_l||²
 = v_i.w_l+1 v_i.v_i (w_l+1.v_i)/||v_i||²=0 for i=1,...,l.
- Finally, we achieve v_1,v_2,...,v_k.
- We can normalize to obtain an orthonormal basis.

- Example 9: (0,0,0,1),(0,0,1,1),(0,1,1,1),(1,1,1,1).
- Example 10: x+y+z+2t = 0, 2x+y+z+t=0.
- Properties:

Theorem 7.9.6 If $S = {\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k}$ is a basis for a nonzero subspace of \mathbb{R}^n , and if $S' = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k}$ is the corresponding orthogonal basis produced by the Gram–Schmidt process, then:

- (a) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_j\}$ is an orthogonal basis for span $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_j\}$ at the *j*th step.
- (b) \mathbf{v}_j is orthogonal to span{ $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_{j-1}$ } at the *j*th step $(j \ge 2)$.

Extending the orthonormal set to orthonormal basis.

Theorem 7.9.7 If W is a nonzero subspace of \mathbb{R}^n , then:

- (a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W.
- (b) Every orthonormal set in W can be enlarged to an orthonormal basis for W.
 - Proof (a): Given v_1,...,v_k. Add v_k+1 orthogonal to Span{v_1,...,v_k}. Add v_k+2 orthogonal to Span{v_1,v_2,...,v_k,v_k+1}. By induction....
 - Proof (b): see book