8.1. Matrix representations of linear transformations

Matrix of a linear operator with respect to a basis.

Matrix of linear operators w.r.t. a

 basis- One can use different representation of a transformation using basis.
- If one uses a right basis, the representation get simpler and easier to understand.
, $x->T x$.
, $[x]_{_} B->[T x]_{-} B=A[x] _B$ for some matrix A depending on B.
- How does one find $A _B$?
- This amounts to change of coordinates. (Coordinates are usually not canonical.)

Theorem 8.1.1 Let $T: R^{n} \rightarrow R^{n}$ be a linear operator, let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for R^{n}, and let

$$
\begin{equation*}
A=\left[\left[T\left(\mathbf{v}_{1}\right)\right]_{B}\left|\left[T\left(\mathbf{v}_{2}\right)\right]_{B}\right| \cdots \mid\left[T\left(\mathbf{v}_{n}\right)\right]_{B}\right] \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
[T(\mathbf{x})]_{B}=A[\mathbf{x}]_{B} \tag{5}
\end{equation*}
$$

for every vector \mathbf{x} in R^{n}. Moreover, the matrix A given by Formula (4) is the only matrix with property (5).

- Proof: If $[x]$ _ $B=\left(c_{-} 1, c_{-} 2, . ., c_{-} n\right)$, then $x=c_{-} l v_{-} 1+\ldots+c_{-} n v_{-} n$.
- $T(x)=c_{-} 1 T\left(v_{-} 1\right)+\ldots+c_{-} n T\left(v_{-} n\right)$

。 $[T(x)] _B=c_{-} 1\left[T\left(v_{-} 1\right)\right] _B+\ldots+c_{-} n\left[T\left(v_{-} n\right)\right] _B$.

$$
=\left[\begin{array}{llll}
{\left[T\left(v_{1}\right)\right]_{B}} & {\left[\begin{array}{lll}
\left.T\left(v_{2}\right)\right]_{B} & \cdots & {\left[T\left(v_{n}\right)\right]_{B}}
\end{array}\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]\right.}
\end{array}=A[x]_{B}\right.
$$

- A is called the matrix of t w.r.t. the basis B.
, $[T] _B=A=\left[\left[T\left(v_{-} 1\right)\right] _B,\left[T\left(v_{-} 2\right)\right] _B, \ldots,\left[T\left(v _n\right)\right] _B\right]$.
- $[\mathrm{T}(\mathrm{x})]$ _ $\mathrm{B}=[\mathrm{T}] _\mathrm{B}[\mathrm{x}]$ _B.
- If S is the standard basis, [T]_S is the standard matrix for T .
- Example 1.
- Example 2. A matrix realized as a rotation....

Changing basis

- What is the relationship between [T]_B and [T]_B' for two basis B and B^{\prime}.
, $[T] _B[x]_{-} B=[T(x)] _B$. $[T]_{-} B^{\prime}[x] _B^{\prime}=[T(x)] _B^{\prime}$.
, $P_{-}\left(B->B^{\prime}\right)[T(x)] _B=[T(x)] _B^{\prime}$
- $P_{-}\left(B->B^{\prime}\right)[x] _B=[x] _B^{\prime}$
- [T]_B'[x]_B'=[T(x)]_B'
, [T]_B'P[x]_B=P[T(x)]_B.
- ($\left.P^{-1}[T] _B^{\prime} P\right)[x] _B=[T(x)] _B$.
- Compare to [T]_B[x]_B=[T(x)]_B.
- Thus $\mathrm{P}^{-1}[\mathrm{~T}] _\mathrm{B}^{\prime} \mathrm{P}=[\mathrm{T}] _\mathrm{B}$.

Theorem 8.1.2 If $T: R^{n} \rightarrow R^{n}$ is a linear operator, and if $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}\right\}$ are bases for R^{n}, then $[T]_{B}$ and $[T]_{B^{\prime}}$ are related by the equation

$$
\begin{equation*}
[T]_{B^{\prime}}=P[T]_{B} P^{-1} \tag{12}
\end{equation*}
$$

in which

$$
\begin{equation*}
P=P_{B \rightarrow B^{\prime}}=\left[\left[\mathbf{v}_{1}\right]_{B^{\prime}}\left|\left[\mathbf{v}_{2}\right]_{B^{\prime}}\right| \cdots \mid\left[\mathbf{v}_{n}\right]_{B^{\prime}}\right] \tag{13}
\end{equation*}
$$

is the transition matrix from B to B^{\prime}. In the special case where B and B^{\prime} are orthonormal bases the matrix P is orthogonal, so (12) is of the form

$$
\begin{equation*}
[T]_{B^{\prime}}=P[T]_{B} P^{T} \tag{14}
\end{equation*}
$$

- [T]_B= $\mathrm{P}^{-1}[\mathrm{~T}] _\mathrm{B}^{\prime} \mathrm{P}$.
, [T]_B= $P^{\top}[T] P$ if B, B^{\prime} orthonormal basis.

S (standard basis)->B.

Theorem 8.1.3 If $T: R^{n} \rightarrow R^{n}$ is a linear operator, and if $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for R^{n}, then $[T]$ and $[T]_{B}$ are related by the equation

$$
[T]=P[T]_{B} P^{-1}
$$

in which

$$
\begin{equation*}
P=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{n}\right] \tag{18}
\end{equation*}
$$

is the transition matrix from B to the standard basis. In the special case where B is an orthonormal basis the matrix P is orthogonal, so (17) is of the form

$$
\begin{equation*}
[T]=P[T]_{B} P^{T} \tag{19}
\end{equation*}
$$

- Proof: $\mathrm{P}=\mathrm{P}_{-}(\mathrm{B}->\mathrm{S})=\left[\left[\mathrm{v}_{-} 1\right]_{-} \mathrm{S}, \ldots,\left[\mathrm{v}_{-} \mathrm{n}\right]\right.$ _S]

$$
=\left[\mathrm{v}_{-} 1, \ldots, \mathrm{v}_{-} \mathrm{n}\right]
$$

- Some formula: $[T] _B=P^{-1}[T] P$. [T]_B=P ${ }^{T}[T] P$.
- Example 3.
- Example 4. Any reflection can be made into a reflection on x-axis by changing basis or changing coordinates

Base changes for transformations $\mathrm{T}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$

- Suppose that we choose basis B for R^{n} and B^{\prime} for R^{m}.
- $x->T(x)$.
- $[x]$ _ $->[T(x)]$ _B'
- $A[x]_{-} B=[T(x)] _B^{\prime}$. What is A ?

Theorem 8.1.4 Let $T: R^{n} \rightarrow R^{m}$ be a linear transformation, let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ be bases for R^{n} and R^{m}, respectively, and let

$$
\begin{equation*}
A=\left[\left[T\left(\mathbf{v}_{1}\right)\right]_{B^{\prime}}\left|\left[T\left(\mathbf{v}_{2}\right)\right]_{B^{\prime}}\right| \cdots \mid\left[T\left(\mathbf{v}_{n}\right)\right]_{B^{\prime}}\right] \tag{23}
\end{equation*}
$$

Then

$$
\begin{equation*}
[T(\mathbf{x})]_{B^{\prime}}=A[\mathbf{x}]_{B} \tag{24}
\end{equation*}
$$

for every vector \mathbf{x} in R^{n}. Moreover, the matrix A given by Formula (23) is the only matrix with property (24).

- Some formula
[T]_B',B -> [[T(v_1)]_B',[T(v_2)]_B', \ldots,
[T(v_n)]_B'] and
- $[T(x)] _B^{\prime}=[T] _B^{\prime}, B[x] _B$
- Example 6.
- Remark: For operators T: $\mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{n}}$, $[\mathrm{T}] _\mathrm{B}=[\mathrm{T}] _\mathrm{B}, \mathrm{B}$.

Effect of changing basis

- $B_{-} 1, B_{-} 2$ for $R^{n}, B^{\prime} _1, B^{\prime} _2$ for R^{m}.
, U transition matrix from $B_{2} 2->B_{-} 1$
- V transition matrix from $\mathrm{B}^{\prime} \mathbf{Z}^{2->B^{\prime}, 1}$
- [T]_B'_1, $\mathrm{B}_{-} 1=\mathrm{V}[\mathrm{T}] _\mathrm{B}^{\prime} \mathrm{B}^{2, \mathrm{~B}_{-} 2 \mathrm{U}^{-1} \text { (*) }}$
- Proof: $[\mathrm{T}(\mathrm{x})]_{-} \mathrm{B}^{\prime} 1=[\mathrm{T}] _\mathrm{B}^{\prime}{ }^{1} 1, \mathrm{~B}_{-} 1[\mathrm{x}]_{-} \mathrm{B}_{-} 1$.
- V[T(x)]_B'_2=[T]_B'_1,B_1U[x]_B_2
- [T(x)]_B'_2=(V-1[T]_B'_1,B-1U)[x]_B_2

० \% Use [w]_B'=P_\{B->B'\}[w]_B.

Representing Linear operators with

 two basis.- Actually, we can use two basis for R^{n} as well.
- [T]_B',B.
- What we used was [T]_B=[T]_B,B. B'=B.
- So change of basis formula: [T]_B_1 =P[T]_BP-1 for $P=P _B->B_{-} 1$.
- $\mathrm{V}, \mathrm{U}=\mathrm{P}$ in this case.
- Thus this follows from (*)

