
8_6 Singular value decomposition 



Diagonalizations 
 A=PDPT. A  symmetric P orthogonal  
 A=PHPT Hessenberg A non-symmetric  
 A=PSPT Schur decomposition  
 A=PJP-1, A any J Jordan form, P 

invertible only. This is sensitive to round 
off errors.  

 A=USVT, U,V orthogonal, S diagonal 
with positive or zero entries in the 
diagonal.   



  proof: ATA is symmetric.  
  ATA=VDVT for  D diagonal, V orthogonal.  
  The diagonal elements of D are eigenvalues of 

ATA.  The column vectors of V are eigenvectors 
of ATA. 

  If x is an eigenvector of  ATA, then   
Ax.Ax=x.ATAx=x.lx=l(x.x), l is nonnegative. 

  Rank A=rank ATA=rank D. (Th. 7.5.7,8.2.3.) 
  We let V be arranged so that the corresponding 

eigenvalues are decreasing.  
  Thus l_1≥l_2≥…≥l_k>0, l_k+1=..=l_n=0. 



 Consider {Av_1,Av_2,…,Av_n}  
  Av_i.Av_j=v_i.ATAv_j = v_i.l_jv_j = l_j(v_i.v_j) 

=0 for i ≠j by the orthogonality of v_is.  
  ||Av_i||2=Av_i.Av_i=v_i.ATAv_j=v_i.l_iv_i 

= l_i(v_i.v_i)=l_i.  
  ||Av_i||=√l_i.  
  {Av_1,…,Av_k} the basis of the column 

space of A. (col rank A=rank A=k) 
 We normalize to obtain u_1,…,u_k.  
  u_j=Av_j/||Av_j|| = Av_j/√l_j. Av_j=√l_ju_j 
  Extend to an orthonormal basis u_1,…,u_n.  
  Let U=[u_1,..,u_k,u_k+1,…,u_n] 



  Let S be the diagonal matrix with diagonal 
entries √l_1,√l_2,..,√l_k,0,..,0.  

  Then US= [√l_1u_1,√l_2u_2,…,√l_k, 0,..,0] 
=[Av_1,Av_2,..,Av_k, Av_k+1,..,Av_n]=AV. 

  Thus, A=USVT.  





 Example 1.  
 Singular value decomposition of 

symmetric matrices.  
  A symmetric.  
  A=PDPT.  
 D may have negative eigenvalues.  
  Let S be the diagonal matrix with the 

absolute values of the diagonal entries of D 
arranged the right way.  

  Then A=PSVT. We put some negative signs 
to the columns of V.  

 Example 2. 



Polar decompositions 

  Proof: A=USVT=(USUT)(UVT) =PQ 
  rank P=rankS=k.  
  A invertible -> k=n -> S positive definite -> P 

positive definite.  
  Example 3.  





  u_1,…,u_k, the left singular vectors of A.  
  v_1,…,v_k, the right singular vectors of 

A. 
 Example 4.  



Singular value decompositions 
and the fundamental spaces 

 Proof: (a) u_1,..,u_k. normalized from 
Av_is. Thus a basis of col(A).  

  (b) col(A)T has basis u_k+1,..,u_n 



  (d): v_1,..,v_n orthonormal set of 
eigenvectors of ATA.  
  v_k+1, …, v_n corr to 0.  
  Thus v_k+1,..,v_n the orthonormal basis of 

null ATA=nullA of dim n-k. 
  (d) proved. 

  (c): v_1,..,v_k. are in null(A)c=row(A).  
  row(A) has dimension k. Thus, v_1,..,v_k 

form an orthonormal basis of row(A).  



Reduced singular value 
decompositions 
 We can remove zero rows and zero 

columns from S.  
 We also eliminate u_k+1,.,u_n, vT_k+1,

…vT_n. 
 A=U_1mxkS_1kxkV_1kxn.  
 A=s_1u_1v_1T+s_2u_2v_1T+…

+s_ku_kv_kT. 
 Example 5. 



Data compression and image 
processing. 
 We can omit small terms in 

A=s_1u_1v_1T+s_2u_2v_1T+…
+s_ku_kv_kT. 

  This decrease the amount one has to 
store and get approximate images.   



Singular value decomposition from the 
transformation point of view.  

  T_A:Rn->Rm  
 Use basis B=[v_1,…,v_n] for Rn.  
 B’= [u_1,..,u_n] for Rm.  
  Then [T_A]_B,B’=S.  
  Thus, in this coordinate, one collapses 

in v_k+1,..,v_n direction and multiply by 
s_1,..,s_k in u_1,…,u_k direction….  



8_7 Pseudo-inverse 

 A=U_1S_1V_1T. mxk, kxk,nxn. 
  If A is an invertible nxn-matrix, then S_1 

is nxn and so U_1,V_1 are nxn.  
 A-1= V_1S_1-1U_1T.  
 Suppose A is not nxn or invertible, then 

k<n.  
 We define pseudo-inverse  

A+=V_1S_1-1U_1T            eqn. (2) 



 Example 1.  

 Proof: A=U_1S_1V_1T.  
  ATA=(V_1S_1TU_1T)

(U_1S_1V_1T)=V_1S_12V_1T.  
  A full rank -> ATA invertible. V nxn-matrix. 
  (ATA)-1= V_1S_1-2V_1T.  
  (ATA)-1AT= V_1S_1-2V_1T(V_1S_1TU_1T ) 
  =V_1S_1-1U_1T = A+ 



Properties of the pseudo-
inverses.  

 Proof: computations using (2) and 
  V_1TV_1=I (kxk-matrix)  
 UTU=I (kxk-matrix.) 



Proof: (d) AA+= (U_1S_1V_1T)V_1S_1-1U_1T 

= U_1U_1T = proj_span{u_1,…,u_k} = proj_col(A) 
(Theorem 8.6.5(a).  
(e) ) A+A= V_1S_1-1U_1T (U_1S_1V_1T)=V_1V_1T 

= proj_span{v_1,..,v_k}=proj_row(A) (Theorem 8.6.5 (c)) 



Pseudo-inverses and the least 
squares 
  If A has full column rank, then ATA is 

invertible and Ax=b has the unique least 
squares solution 

  x=(ATA)-1ATb=A+b. (Theorem 7.8.3) 
  If A does not have a full rank, Theorem 

7.8.3, there is a unique one in the row 
space of A. (minimum norm one.)  



Proof: x=A+b = V_1S_1U_1Tb  
Thus, (ATA)A+b= V_1S_12V_1TV_1S_1-1U_1Tb= V_1S_12S_1-1U_1T b 

=V_1S_1U_1Tb=ATb.   
Thus x satisfies the least squares equation.  
By Theorem 7.8.3, if x is in the row space of A, we are done.  
Theorem 8.7.3 implies that x is in row(A).  



Condition numbers 

  If some eigenvalues of A is zero or close 
to zero, then Ax=b is said to be ill 
conditioned.  

  If the system is ill conditioned, then 
errors can become large….  


