8_6 Singular value decomposition

DIAGONALIZATION USING TWO ORTHOGONAL MATRICES

Diagonalizations

- A=PDP^T. A symmetric P orthogonal
- A=PHP^T Hessenberg A non-symmetric
- A=PSP^T Schur decomposition
- A=PJP⁻¹, A any J Jordan form, P invertible only. This is sensitive to round off errors.
- A=USV^T, U,V orthogonal, S diagonal with positive or zero entries in the diagonal.

Theorem 8.6.1 If A is an $n \times n$ matrix of rank k, then A can be factored as

 $A = U\Sigma V^{T}$

where U and V are $n \times n$ orthogonal matrices and Σ is an $n \times n$ diagonal matrix whose main diagonal has k positive entries and n - k zeros.

- proof: A^TA is symmetric.
 - A^TA=VDV^T for D diagonal, V orthogonal.
 - The diagonal elements of D are eigenvalues of A^TA. The column vectors of V are eigenvectors of A^TA.
 - If x is an eigenvector of A^TA, then Ax.Ax=x.A^TAx=x.Ix=I(x.x), I is nonnegative.
 - Rank A=rank A^TA=rank D. (Th. 7.5.7,8.2.3.)
 - We let V be arranged so that the corresponding eigenvalues are decreasing.
 - Thus I_1≥I_2≥...≥I_k>0, I_k+1=..=I_n=0.

- Consider {Av_1,Av_2,...,Av_n}
- Av_i.Av_j=v_i.A^TAv_j = v_i.l_jv_j = l_j(v_i.v_j)
 =0 for i ≠j by the orthogonality of v_is.
- $||Av_i||^2 = Av_i Av_i = v_i A^T Av_j = v_i I_i v_i$ = $I_i(v_i v_i) = I_i$.
- ||Av_i||=√l_i.
- {Av_1,...,Av_k} the basis of the column space of A. (col rank A=rank A=k)
- We normalize to obtain u_1,...,u_k.
- $u_j = Av_j/||Av_j|| = Av_j/\sqrt{|_j}$. $Av_j = \sqrt{|_ju_j}$
- Extend to an orthonormal basis u_1,...,u_n.
- Let U=[u_1,..,u_k,u_k+1,...,u_n]

- Let S be the diagonal matrix with diagonal entries √I_1,√I_2,..,√I_k,0,..,0.
- Then US= [√I_1u_1,√I_2u_2,...,√I_k, 0,...,0]
 =[Av_1,Av_2,...,Av_k, Av_k+1,...,Av_n]=AV.
- Thus, $A=USV^{T}$.

Theorem 8.6.2 (*Singular Value Decomposition of a Square Matrix*) If A is an $n \times n$ matrix of rank k, then A has a singular value decomposition $A = U\Sigma V^T$ in which:

(a) $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ orthogonally diagonalizes $A^T A$.

(b) The nonzero diagonal entries of Σ are

$$\sigma_1 = \sqrt{\lambda_1}, \sigma_2 = \sqrt{\lambda_2}, \ldots, \sigma_k = \sqrt{\lambda_k}$$

where $\lambda_1, \lambda_2, ..., \lambda_k$ are the nonzero eigenvalues of $A^T A$ corresponding to the column vectors of V.

(c) The column vectors of V are ordered so that σ₁ ≥ σ₂ ≥ ··· ≥ σ_k > 0.
(d) **u**_i = A**v**_i/|A**v**_i|| = 1/σ_i A**v**_i (i = 1, 2, ..., k)
(e) {**u**₁, **u**₂, ..., **u**_k} is an orthonormal basis for col(A).
(f) {**u**₁, **u**₂, ..., **u**_k, **u**_{k+1}, ..., **u**_n} is an extension of {**u**₁, **u**₂, ..., **u**_k} to an orthonormal basis for Rⁿ.

• Example 1.

Singular value decomposition of symmetric matrices.

- A symmetric.
- A=PDP^T.
- D may have negative eigenvalues.
- Let S be the diagonal matrix with the absolute values of the diagonal entries of D arranged the right way.
- Then A=PSV^T. We put some negative signs to the columns of V.

• Example 2.

Polar decompositions

Theorem 8.6.3 (*Polar Decomposition*) If A is an $n \times n$ matrix of rank k, then A can be factored as

$$A = PQ$$

where *P* is an $n \times n$ positive semidefinite matrix of rank *k*, and *Q* is an $n \times n$ orthogonal matrix. Moreover, if *A* is invertible (rank *n*), then there is a factorization of form (9) in which *P* is positive definite.

(9)

- Proof: $A=USV^{T}=(USU^{T})(UV^{T})=PQ$
 - rank P=rankS=k.
 - A invertible -> k=n -> S positive definite -> P positive definite.
- Example 3.

Theorem 8.6.4 (*Singular Value Decomposition of a General Matrix*) If A is an $m \times n$ matrix of rank k, then A can be factored as

$$A = U\Sigma V^{T} = [\mathbf{u}_{1} \ \mathbf{u}_{2} \ \cdots \ \mathbf{u}_{k} | \mathbf{u}_{k+1} \ \cdots \ \mathbf{u}_{m}] \begin{bmatrix} \sigma_{1} \ 0 \ \cdots \ 0 | \\ 0 \ \sigma_{2} \ \cdots \ 0 | \\ \vdots \ \vdots \ \ddots \ \vdots | \\ 0 \ 0 \ \cdots \ \sigma_{k} \\ 0 \ (m-k) \times k \ | \ 0 \ (m-k) \times (n-k) \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \\ \mathbf{v}_{k+1}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{bmatrix}$$

$$(12)$$

in which U, Σ , and V have sizes $m \times m$, $m \times n$, and $n \times n$, respectively, and in which:

- (a) $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ orthogonally diagonalizes $A^T A$.
- (b) The nonzero diagonal entries of Σ are $\sigma_1 = \sqrt{\lambda_1}$, $\sigma_2 = \sqrt{\lambda_2}$, ..., $\sigma_k = \sqrt{\lambda_k}$, where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the nonzero eigenvalues of $A^T A$ corresponding to the column vectors of V.

(c) The column vectors of V are ordered so that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k > 0$.

(d)
$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|} = \frac{1}{\sigma_i}A\mathbf{v}_i$$
 $(i = 1, 2, \dots, k)$

(e) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthonormal basis for $\operatorname{col}(A)$.

(f) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_m\}$ is an extension of $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ to an orthonormal basis for \mathbb{R}^m .

u_1,...,u_k, the left singular vectors of A. v_1,...,v_k, the right singular vectors of A.

• Example 4.

Singular value decompositions and the fundamental spaces

Theorem 8.6.5 If A is an $m \times n$ matrix with rank k, and if $A = U\Sigma V^T$ is the singular value decomposition given in Formula (12), then:

- (a) $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$ is an orthonormal basis for $\operatorname{col}(A)$.
- (b) $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_m\}$ is an orthonormal basis for $\operatorname{col}(A)^{\perp} = \operatorname{null}(A^T)$.
- (c) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthonormal basis for row(A).
- (d) $\{\mathbf{v}_{k+1}, \ldots, \mathbf{v}_n\}$ is an orthonormal basis for $\operatorname{row}(A)^{\perp} = \operatorname{null}(A)$.

Proof: (a) u_1,...,u_k. normalized from Av_is. Thus a basis of col(A).
 (b) col(A)^T has basis u_k+1,...,u_n

- (d): v_1,..,v_n orthonormal set of eigenvectors of A^TA.
 - v_k+1, ..., v_n corr to 0.
 - Thus v_k+1,..,v_n the orthonormal basis of null A^TA=nullA of dim n-k.
 - (d) proved.

(c): v_1,..,v_k. are in null(A)^c=row(A).

 row(A) has dimension k. Thus, v_1,..,v_k form an orthonormal basis of row(A).

Reduced singular value decompositions

- We can remove zero rows and zero columns from S.
- We also eliminate u_k+1,.,u_n, v^T_k+1, ...v^T_n.
- $A=U_1^{mxk}S_1^{kxk}V_1^{kxn}$.
- $A=s_1u_1v_1^T+s_2u_2v_1^T+...$ +s_ku_kv_k^T.
- Example 5.

Data compression and image processing.

- We can omit small terms in A=s_1u_1v_1^T+s_2u_2v_1^T+... +s_ku_kv_k^T.
- This decrease the amount one has to store and get approximate images.

Singular value decomposition from the transformation point of view.

• $T_A: R^n \rightarrow R^m$

- Use basis B=[v_1,...,v_n] for Rⁿ.
- B'= $[u_1,..,u_n]$ for \mathbb{R}^m .
- Then $[T_A]_B,B'=S$.
- Thus, in this coordinate, one collapses in v_k+1,...,v_n direction and multiply by s_1,...,s_k in u_1,...,u_k direction....

8_7 Pseudo-inverse

- $A=U_1S_1V_1^T$. mxk, kxk,nxn.
- If A is an invertible nxn-matrix, then S_1 is nxn and so U_1,V_1 are nxn.
- $A^{-1} = V_1 S_1^{-1} U_1^{T}$.
- Suppose A is not nxn or invertible, then k<n.
- We define pseudo-inverse
 A⁺=V_1S_1⁻¹U_1^T eqn. (2)

• Example 1.

Theorem 8.7.1 If A is an $m \times n$ matrix with full column rank, then $A^+ = (A^T A)^{-1} A^T$

• Proof: $A=U_1S_1V_1^T$.

- $A^{T}A=(V_1S_1^{T}U_1^{T})$ $(U_1S_1V_1^{T})=V_1S_1^2V_1^{T}.$
- A full rank -> A^TA invertible. V nxn-matrix.

(3)

•
$$(A^{T}A)^{-1} = V_{1}S_{1}^{-2}V_{1}^{T}$$
.

- $(A^{T}A)^{-1}A^{T} = V_{1}S_{1}^{-2}V_{1}(V_{1}S_{1}^{T}U_{1}^{T})$
- =V_1S_1⁻¹U_1^T = A^+

Properties of the pseudoinverses.

Theorem 8.7.2 If A^+ is the pseudoinverse of an $m \times n$ matrix A, then:

- $(a) AA^+\!A = A$
- (b) $A^+\!AA^+ = A^+$
- $(c) (AA^+)^T = AA^+$
- $(d) (A^+A)^T = A^+A$
- (e) $(A^T)^+ = (A^+)^T$
- $(f) A^{++} = A$

Proof: computations using (2) and

- $V_1^T V_1 = I$ (kxk-matrix)
- U^TU=I (kxk-matrix.)

Theorem 8.7.3 If $A^+ = V_1 \Sigma_1^{-1} U_1^T$ is the pseudoinverse of an $m \times n$ matrix A of rank k, and if the column vectors of U_1 and V_1 are $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$, respectively, then:

(a) A^+ **y** is in row(A) for every vector **y** in R^m .

(b)
$$A^+\mathbf{u}_i = \frac{1}{\sigma_i}\mathbf{v}_i$$
 $(i = 1, 2, \dots, k)$

- (c) $A^+\mathbf{y} = \mathbf{0}$ for every vector \mathbf{y} in $\operatorname{null}(A^T)$.
- (d) AA^+ is the orthogonal projection of R^m onto col(A).
- (e) A^+A is the orthogonal projection of \mathbb{R}^n onto $\operatorname{row}(A)$.

Proof: (d) $AA^+= (U_1S_1V_1^{T})V_1S_1^{-1}U_1^{T}$ = $U_1U_1^{T}$ = proj_span{ $u_1,...,u_k$ } = proj_col(A) (Theorem 8.6.5(a). (e)) $A^+A = V_1S_1^{-1}U_1^{T} (U_1S_1V_1^{T}) = V_1V_1^{T}$ = proj_span{ $v_1,...,v_k$ }=proj_row(A) (Theorem 8.6.5 (c))

Pseudo-inverses and the least squares

 If A has full column rank, then A^TA is invertible and Ax=b has the unique least squares solution

• $x = (A^T A)^{-1} A^T b = A^+ b$. (Theorem 7.8.3)

 If A does not have a full rank, Theorem 7.8.3, there is a unique one in the row space of A. (minimum norm one.) **Theorem 8.7.4** If A is an $m \times n$ matrix, and **b** is any vector in \mathbb{R}^m , then

 $\mathbf{x} = A^+ \mathbf{b}$

is the least squares solution of $A\mathbf{x} = \mathbf{b}$ that has minimum norm.

Proof: $x=A^+b = V_1S_1U_1^+b$ Thus, $(A^TA)A^+b = V_1S_1^2V_1^+V_1S_1^-U_1^+b = V_1S_1^2S_1^-U_1^+b$ $=V_1S_1U_1^+b = A^+b$. Thus x satisfies the least squares equation. By Theorem 7.8.3, if x is in the row space of A, we are done. Theorem 8.7.3 implies that x is in row(A).

Condition numbers

- If some eigenvalues of A is zero or close to zero, then Ax=b is said to be ill conditioned.
- If the system is ill conditioned, then errors can become large....