
1 Introduction
Outline

• Geometries

– Euclidean geometry

– Spherical geometry

– Affine geometry

– Projective geometry

– Conformal geometry: Poincare extensions

– Hyperbolic geometry

∗ Lorentz group
∗ Geometry of hyperbolic space
∗ Beltrami-Klein model
∗ Conformal ball model
∗ The upper-half space model

– Discrete groups: examples

∗ Discrete group actions
∗ Convex polyhedrons
∗ Side pairings and the fundamental theorem
∗ Crystallographic groups

Some helpful references

• W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal
source)

• W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997

• M. Berger, Geometry I, Springer

• J. Ratcliffe, Foundations of hyperbolic manifolds, Springer

• M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

• My talk http://math.kaist.ac.kr/~schoi/Titechtalk.pdf
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2 Geometries

2.1 Euclidean geometry
Euclidean geometry

• The Euclidean space is Rn and the group Isom(Rn) of rigid motions is gener-
ated by O(n) and Tn the translation group. In fact, we have an inner-product
giving us a metric.

• A system of linear equations gives us a subspace (affine or linear)

• This gives us the model for Euclidean axioms....

2.2 Spherical geometry
Spherical geometry

• Let us consider the unit sphere Sn in the Euclidean space Rn+1.

• Many great sphere exists and they are subspaces... (They are given by homoge-
neous system of linear equations in Rn+1.)

• The lines are replaced by great circles and lengths and angles are also replaced.

• The transformation group is O(n+ 1).

Spherical trigonometry

• Many spherical triangle theorems exist... http://mathworld.wolfram.
com/SphericalTrigonometry.html

• Such a triangle is classified by their angles θ0, θ1, θ2 satisfying

θ0 + θ1 + θ2 > π (1)
θi < θi+1 + θi+2 − π, i ∈ Z3. (2)

•
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•

2.3 Affine geometry
Affine geometry

• A vector space Rn becomes an affine space by forgetting the origin.

• An affine transformation of Rn is one given by x 7→ Ax+ b for A ∈ GL(n,R)
and b ∈ Rn. This notion is more general than that of rigid motions.

• The Euclidean space Rn with the group Aff(Rn) = GL(n,R) · Rn of affine
transformations form the affine geometry.

• Of course, angles and lengths do not make sense. But the notion of lines exists.

• The set of three points in a line has an invariant based on ratios of lengths.

2.4 Projective geometry
Projective geometry

• Projective geometry was first considered from fine art.

• Desargues (and Kepler) first considered points at infinity.

• Poncelet first added infinite points to the euclidean plane.

• Projective transformations are compositions of perspectivities. Often, they send
finite points to infinite points and vice versa. (i.e., two planes that are not paral-
lel).
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• The added points are same as ordinary points up to projective transformations.

• Lines have well defined infinite points and are really circles topologically.

• Some notions lose meanings. However, many interesting theorems can be proved.
Duality of theorems plays an interesting role.

• See for an interactive course: http://www.math.poly.edu/courses/
projective_geometry/

• and http://demonstrations.wolfram.com/TheoremeDePappusFrench/,
http://demonstrations.wolfram.com/TheoremeDePascalFrench/,
http://www.math.umd.edu/~wphooper/pappus9/pappus.html,
http://www.math.umd.edu/~wphooper/pappus/

• Formal definition with topology is given by Felix Klein using homogeneous co-
ordinates.

• The projective space RPn is Rn+1 − {O}/ ∼ where ∼ is given by v ∼ w if
v = sw for s ∈ R.

• Each point is given a homogeneous coordinates: [v] = [x0, x1, ..., xn].

• The projective transformation group PGL(n+1,R) = GL(n+1,R)/ ∼ acts on
RPn by each element sending each ray to a ray using the corresponding general
linear maps.

• Here, each element of g of PGL(n+ 1,R) acts by [v] 7→ [g′(v)] for a represen-
tative g′ in GL(n + 1,R) of g. Also any coordinate change can be viewed this
way.

• The affine geometry can be "imbedded": Rn can be identified with the set of
points in RPn where x0 is not zero, i.e., the set of points {[1, x1, x2, ..., xn]}.
This is called an affine patch. The subgroup of PGL(n + 1,R) fixing Rn is
precisely Aff(Rn) = GL(n,R) · Rn.

• The subspace of points {[0, x1, x2, ..., xn]} is the complement homeomorphic to
RPn−1. This is the set of infinities, i.e., directions in RPn.

• From affine geometry, one can construct a unique projective geometry and con-
versely using this idea. (See Berger for the complete abstract approach.)
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• A subspace is the set of points whose representative vectors satisfy a homoge-
neous system of linear equations. The subspace in Rn+1 corresponding to a
projective subspace in RPn in a one-to-one manner while the dimension drops
by 1.

• The independence of points are defined. The dimension of a subspace is the
maximal number of independent set minus 1.

• A hyperspace is given by a single linear equation. The complement of a hyper-
space can be identified with an affine space.

• A line is the set of points [v] where v = sv1+tv2 for s, t ∈ R for the independent
pair v1, v2. Acutally a line is RP 1 or a line R1 with a unique infinity.

• Cross ratios of four points on a line (x, y, z, t). There is a unique coordinate
system so that x = [1, 0], y = [0, 1], z = [1, 1], t = [b, 1]. Thus b = b(x, y, z, t)
is the cross-ratio.

• If the four points are on R1, the cross ratio is given as

(x, y; z, t) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

if we can write

x = [1, z1], y = [1, z2], z = [1, z3], t = [1, z4]

• One can define cross ratios of four hyperplanes meeting in a projective subspace
of codimension 2.

• For us n = 2 is important. Here we have a familiar projective plane as topolog-
ical type of RP 2, which is a Mobius band with a disk filled in at the boundary.
http://www.geom.uiuc.edu/zoo/toptype/pplane/cap/

2.5 Conformal geometry
Conformal geometry

• Reflections of Rn. The hyperplane P (a, t) given by a cotx = b. Then ρ(x) =
x+ 2(t− a · x)a.

• Inversions. The hypersphere S(a, r) given by |x − a| = r. Then σ(x) = a +
( r
|x−a| )

2(x− a).
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• We can compactify Rn to R̂n = Sn by adding infinity. This can be accom-
plished by a stereographic projection from the unit sphere Sn in Rn+1 from the
northpole (0, 0, ..., 1). Then these reflections and inversions induce conformal
homeomorphisms.

• The group of transformations generated by these homeomorphisms is called the
Mobius transformation group.

• They form the conformal transformation group of R̂n = Sn.

• For n = 2, R̂2 is the Riemann sphere Ĉ and a Mobius transformation is a either
a fractional linear transformation of form

z 7→ az + b

cz + d
, ad− bc 6= 0, a, b, c, d ∈ C

or a fractional linear transformation pre-composed with the conjugation map
z 7→ z̄.

• In higher-dimensions, a description as a sphere of null-lines and the special
Lorentizian group exists.

Poincare extensions

• We can identify En−1 with En−1 × {O} in En.

• We can extend each Mobius transformation of Ên−1 to Ên that preserves the
upper half space U : We extend reflections and inversions in the obvious way.

• The Mobius transformation of Ên that preserves the open upper half spaces are
exactly the extensions of the Mobius transformations of Ên−1.

• M(Un) = M(Ên−1).

• We can put the pair (Un, Ên−1) to (Bn,Sn−1) by a Mobius transformation.

• Thus, M(Un) is isomorphic to M(Sn−1) for the boundary sphere.

2.6 Hyperbolic geometry
Lorentzian geometry

• A hyperbolic spaceHn is defined as a complex Riemannian manifold of constant
curvature equal to −1.

• Such a space cannot be realized as a submanifold in a Euclidean space of even
very large dimensions.

• But it is realized as a "sphere" in a Lorentzian space.
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• A Lorentzian space is R1,n with an inner product

x · y = −x0y0 + x1y1 + · · ·+ xn−1yn−1 + xnyn.

• A Lorentzian norm ||x|| = (x · y)1/2, a positive, zero, or positive imaginary
number.

• One can define Lorentzian angles.

• The null vectors form a light cone divide into positive, negative cone, and 0.

• Space like vectors and time like vectors and null vectors.

• Ordinary notions such as orthogonality, orthonormality,...

Lorentz group

• A Lorentzian transformation is a linear map preserving the inner-product.

• For J the diagonal matrix with entries−1, 1, ..., 1,AtJA = J iffA is a Lorentzian
matrix.

• A Lorentzian transformation sends time-like vectors to time-like vectors. It is
either positive or negative.

• The set of Lorentzian transformations form a Lie group O(1, n).

• The set of positive Lorentzian transformations form a Lie subgroup PO(1, n).

Hyperbolic space

• Given two positive time-like vectors, there is a time-like angle

x · y = ||x||||y||coshη(x, y)

• A hyperbolic space is an upper component of the submanifold defined by ||x||2 =
−1 or x20 = 1 + x21 + · · ·+ x2n. This is a subset of a positive cone.

• Topologically, it is homeomorphic to Rn. Minkowsky model

• One induces a metric from the Lorentzian space which is positive definite.

• This gives us a Riemannian metric of constant curvature −1. (The computation
is very similar to the computations for the sphere.)

• PO(1, n) is the isometry group of Hn which is homogeneous and directionless.

• A hyperbolic line is an intersection of Hn with a time-like two-dimensional
vector subspace.

• The hyperbolic sine law, The first law of cosines, The second law of cosines...
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• One can assign any interior angles to a hyperbolic triangle as long as the sum is
less than π.

• One can assign any lengths to a hyperbolic triangle.

• The triangle formula can be generalized to formula for quadrilateral, pentagon,
hexagon.

• Basic philosophy here is that one can push the vertex outside and the angle be-
comes distances between lines. (See Ratcliffe, http://online.redwoods.
cc.ca.us/instruct/darnold/staffdev/Assignments/sinandcos.
pdf)

• hyperbolic law of sines:

sinA/ sinh a = sinB/ sinh b = sinC/ sinh c

• hyperbolic law of cosines:

cosh c = cosh a cosh b− sinh a sinh b cosC

cosh c = (coshA coshB + cosC)/ sinhA sinhB

Beltrami-Klein models of hyperbolic geometry

• Beltrami-Klein model is directly obtained from the hyperboloid model.

• dk(P,Q) = 1/2 log |(AB,PQ)| where A,P,Q,B are on a segment with end-
points A,B and

(AB,PQ) =

∣∣∣∣APBP BQ

AQ

∣∣∣∣ .
• There is an imbedding from Hn onto an open ball B in the affine patch Rn of

RPn. This is standard radial projection Rn+1 − {O} → RPn.

• B can be described as a ball of radius 1 with center at O.

• The isometry group PO(1, n) also maps injectively to a subgroup of PGL(n+
1,R) that preserves B.

• The projective automorphism group of B is precisely this group.

• The metric is induced on B. This is precisely the metric given by the log of the
cross ratio. Note that λ(t) = (cosh t, sinh t, 0, ..., 0) define a unit speed geodesic
inHn. Under the Riemannian metric, we have d(e1, (cosh t, sinh t, 0, ..., 0)) = t
for t positive.

• Under dk, we obtain the same. Since any geodesic segment of same length is
congruent under the isometry, we see that the two metrics coincide. Betrami-
Klein model
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• Beltrami-Klein model is nice because you can see outside. The outside is the
anti-de Sitter space http://en.wikipedia.org/wiki/Anti_de_Sitter_
space

• Also, we can treat points outside and inside together.

• Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal
by the Lorentzian inner-product) A point in the model is dual to a hyperplane
outside. Infact any subspace of dimenstion i is dual to a subspace of dimension
n− i− 1 by orthogonality.

• For n = 2, the duality of a line is given by taking tangent lines to the disk at the
endpoints and taking the intersection.

• The distance between two hyperplanes can be obtained by two dual points. The
two dual points span an orthogonal plane to the both hyperperplanes and hence
provide a shortest geodesic.

The conformal ball model (Poincare ball model)

• The stereo-graphic projection Hn to the plane P given by x0 = 0 from the point
(−1, 0, ..., 0).

• The formula for the map κ : Hn → P is given by

κ(x) =

(
y1

1 + y0
, ...,

yn
1 + y0

)
,

where the image lies in an open ball of radius 1 with center O in P . The inverse
is given by

ζ(x) =

(
1 + |x|2

1− |x|2
,

2x1
1− |x|2

, ...,
2xn

1− |x|2
,

)
.

• Since this is a diffeomorphism, B has an induced Riemannian metric of constant
curvature −1.

• We show

cosh dB(x, y) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
,

and inversions acting on B preserves the metric. Thus, the group of Mobius
transformations of B preserve metric.

• The corresponding Riemannian metric is gij = 2δij/(1− |x|2)2.

• It follows that the group of Mobius transformations acting on B is precisely the
isometry group of B. Thus, Isom(B) = M(Sn−1).

• Geodesics would be lines through O and arcs on circles perpendicular to the
sphere of radius 1.
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The upper-half space model.

• Now we putB toU by a Mobius transformation. This gives a Riemannian metric
constant curvature −1.

• We have by computations cosh dU (x, y) = 1+ |x−y|2/2xnyn and the Rieman-
nian metric is given by gij = δij/x

2
n. Then I(U) = M(U) = M(En−1).

• Geodesics would be arcs on lines or circles perpendicular to En−1.

• Since Ê1 is a circle and Ê2 is the complex sphere, we obtain Isom+(B2) =
PSL(2,R) and Isom+(B3) = PSL(2,C).

• Orientation-preserving isometries of hyperbolic plane can have at most one fixed
point. elliptic, hyperbolic, parabolic.

z 7→ eiθ, z 7→ az, a 6= 1, a ∈ R+, z 7→ z + 1

• Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.

• Up to conjugations, they are represented as Mobius transformations which has
forms

– z 7→ αz, Imα 6= 0, |α| 6= 1.

– z 7→ az, a 6= 1, a ∈ R+.

– z 7→ eiθz, θ 6= 0.

– z 7→ z + 1.

3 Discrete group actions
Discrete groups and discrete group actions

• A discrete group is a group with a discrete topology. (Usually a finitely generated
subgroup of a Lie group.) Any group can be made into a discrete group.

• We have many notions of a group action Γ×X → X:

– The action is effective, is free

– The action is discrete if Γ is discrete in the group of homeomorphisms of
X with compact open topology.

– The action has discrete orbits if every x has a neighborhood U so that the
orbit points in U is finite.

– The action is wandering if every x has a neighborhood U so that the set of
elements γ of Γ so that γ(U) ∩ U 6= ∅ is finite.

– The action is properly discontinuous if for every compact subset K the set
of γ such that K ∩ γ(K) 6= ∅ is finite.

10



• discrete action < discrete orbit < wandering < properly discontinuous. This is a
strict relation (Assuming X is a manifold.)

• The action is wandering and free and gives manifold quotient (possibly non-
Hausdorff)

• The action of Γ is free and properly discontinuous if and only if X/Γ is a mani-
fold quotient (Hausdorff) and X → X/Γ is a covering map.

• Γ a discrete subgroup of a Lie group G acting on X with compact stabilizer.
Then Γ acts properly discontinuously on X .

• A complete (X,G) manifold is one isomorphic to X/Γ.

• SupposeX is simply-connected. Given a manifoldM the set of complete (X,G)-
structures on M up to (X,G)-isotopies are in one-to-one correspondence with
the discrete representations of π(M)→ G up to conjugations.

Examples

• R2 − {O} with the group generated by g1 : (x, y) → (2x, y/2). This is a free
wondering action but not properly discontinuous.

• R2 − {O} with the group generated by g : (x, y) → (2x, 2y). (free, properly
discontinuous.)

• The modular group PSL(2,Z) the group of Mobius transformations or isome-
tries of hyperbolic plane given by z 7→ az+b

cz+d for integer a, b, c, d and ad− bc =
1. http://en.wikipedia.org/wiki/Modular_group. This is not a
free action.

Convex polyhedrons

• A convex subset of Hn is a subset such that for any pair of points, the geodesic
segment between them is in the subset.

• Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space,
is a subset of an affine patch Rn. In Rn, one can talk about convex hulls.

• Some facts about convex sets:

– The dimension of a convex set is the least integer m such that C is con-
tained in a unique m-plane Ĉ in Hn.

– The interior Co, the boundary ∂C are defined in Ĉ.

– The closure of C is in Ĉ. The interior and closures are convex. They
are homeomorphic to an open ball and a contractible domain of dimension
equal to that of Ĉ respectively.
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Convex polytopes

• A side C is a nonempty maximal convex subset of ∂C.

• A convex polyhedron is a nonempty closed convex subset such that the set of
sides is locally finite in Hn.

• A polytope is a convex polyhedron with finitely many vertices and is the convex
hull of its vertices inHn.

• A polyhedron P in Hn is a generalized polytope if its closure is a polytope in
the affine patch. A generalized polytope may have ideal vertices.

Examples of Convex polytopes

• A compact simplex: convex hull of n+ 1 points in Hn.

• Start from the origin expand the infinitesimal euclidean polytope from an interior
point radially. That is a map sending x → sx for s > 0 and x is the coordinate
vector of an affine patch using in fact any vector coordinates. Thus for any
Euclidean polytope, we obtain a one parameter family of hyperbolic polytopes.

•

Regular dodecahedron with all edge angles π/2

Fundamental domain of discrete group action

• Let Γ be a group acting on X .

• A fundamental domain for Γ is an open domain F so that {gF |g ∈ Γ} is a
collection of disjoint sets and their closures cover X .

• The fundamental domain is locally finite if the above closures are locally finite.
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• The Dirichlet domain for u ∈ X is the intersection of all Hg(u) = {x ∈
X|d(x, u) < d(x, gu)}. Under nice conditions, D(u) is a convex fundamen-
tal polyhedron.

• The regular octahedron example of hyperbolic surface of genus 2 is an example
of a Dirichlet domain with the origin as u.

Tessellations

• A tessellation of X is a locally-finite collection of polyhedra covering X with
mutually disjoint interiors.

• Convex fundamental polyhedron provides examples of exact tessellations.

• If P is an exact convex fundamental polyhedron of a discrete group Γ of isome-
tries acting on X , then Γ is generated by Φ = {g ∈ Γ|P ∩ g(P ) is a side of P}.

Side pairings and Poincare fundamental polyhedron theorem

• Given a side S of an exact convex fundamental domain P , there is a unique
element gS such that S = P ∩ gS(P ). And S′ = g−1S (S) is also a side of P .

• gS′ = g−1S since S′ = P ∩ g−1S .

• Γ-side-pairing is the set of gS for sides S of P .

• The equivalence class at P is generated by x ∼= x′ if there is a side-pairing
sending x to x′ for x, x′ ∈ P .

• [x] is finite and [x] = P ∩ Γ.

• Cycle relations (This should be cyclic):

– Let S1 = S for a given side S. Choose the side R of S1. Obtain S′1. Let
S2 be the side adjacent to S′1 so that gS1(S′1 ∩ S2) = R.

– Let Si+1 be the side of P adjacent to S′i such that gSi(S
′
i∩Si+1) = S′i−1∩

Si.

• Then

– There is an integer l such that Si+l = Si for each i.

–
∑l
i=1 θ(S

′
i, Si+1) = 2π/k.

– gS1gS2 ....gSl
has order k.

• Example: the octahedron in the hyperbolic plane giving genus 2-surface.

• The period is the number of sides coming into a given side R of codimension
two.
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• (a1, D), (a1′,K), (b1′,K), (b1, B), (a1′, B), (a1, C), (b1, C),

• (b1′, H), (a2, H), (a2′, E), (b2′, E), (b2, F ), (a2′, F ), (a2, G),

• (b2, G), (b2′, D), (a1, D), (a1′,K), ...

• Poincare fundamental polyhedron theorem is the converse. (See Kapovich P.
80–84):

• Given a convex polyhedron P in X with side-pairing isometries satisfying the
above relations, then P is the fundamental domain for the discrete group gener-
ated by the side-pairing isometries.

• If every k equals 1, then the result of the face identification is a manifold. Oth-
erwise, we obtain orbifolds.

• The results are always complete.

• See Jeff Weeks http://www.geometrygames.org/CurvedSpaces/
index.html

Reflection groups

• A discrete reflection group is a discrete subgroup in G generated by reflections
in X about sides of a convex polyhedron. Then all the dihedral angles are sub-
multiples of π.

• Then the side pairing such that each face is glued to itself by a reflection satisfies
the Poincare fundamental theorem.

• The reflection group has presentation {Si : (SiSj)
kij} where kii = 1 and kij =

kji.

• These are examples of Coxeter groups. http://en.wikipedia.org/wiki/
Coxeter_group
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Icosahedral reflection group
One has a regular dodecahedron with all edge angles π/2 and hence it is a funda-

mental domain of a hyperbolic reflection group.

Triangle groups

• Find a triangle in X with angles submultiples of π.

• We divide into three cases π/a+ π/b+ π/c > 0,= 0, < 0.

• We can always find ones for any integers a, b, c.

– > 0 cases: (2, 2, c), (2, 3, 3), (2, 3, 4), (2, 3, 5) corresponding to dihedral
group of order 4c, a tetrahedral group, octahedral group, and icosahedral
group.

– = 0 cases: (3, 3, 3), (2, 4, 4), (2, 3, 6).

– < 0 cases: Infinitely many hyperbolic tessellation groups.

• (2, 4, 8)-triangle group

• The ideal example http://egl.math.umd.edu/software.html

Higher-dimensional examples

• To construct a 3-dimensional examples, obtain a Euclidean regular polytopes
and expand it until we achieve that all angles are π/3. Regular octahedron with
angles π/2. These are ideal polytope examples.

• Higher-dimensional examples were analyzed by Vinberg and so on. For exam-
ple, there are no hyperbolic reflection group of compact type above dimension
≥ 30.
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Crystallographic groups

• A crystallographic group is a discrete group of the rigid motions whose quotient
space is compact.

• Bieberbach theorem:

– A group is isomorphic to a crystallographic group if and only if it contains a
subgroup of finite index that is free abelian of rank equal to the dimension.

– The crystallographic groups are isomorphic as abstract groups if and only
if they are conjugate by an affine transformation.

Crystallographic groups

• There are only finitely many crystallographic group for each dimension since
once the abelian group action is determined, its symmetry group can only be
finitely many.

• 17 wallpaper groups for dimension 2. http://www.clarku.edu/~djoyce/
wallpaper/ and see Kali by Weeks http://www.geometrygames.org/Kali/index.html.

• 230 space groups for dimension 3. Conway, Thurston, ... http://www.
emis.de/journals/BAG/vol.42/no.2/b42h2con.pdf

• Further informations: http://www.ornl.gov/sci/ortep/topology.
html
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