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Some helpful references

e W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal
source)

W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997

M. Berger, Geometry I, Springer

J. Ratcliffe, Foundations of hyperbolic manifolds, Springer

M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

My talk http://math.kaist.ac.kr/~schoi/Titechtalk.pdf
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2 Geometries

2.1 Euclidean geometry

Euclidean geometry

e The Euclidean space is R™ and the group Isom(R™) of rigid motions is gener-
ated by O(n) and T, the translation group. In fact, we have an inner-product
giving us a metric.

e A system of linear equations gives us a subspace (affine or linear)

e This gives us the model for Euclidean axioms....

2.2 Spherical geometry
Spherical geometry
e Let us consider the unit sphere S” in the Euclidean space R 1.

e Many great sphere exists and they are subspaces... (They are given by homoge-
neous system of linear equations in R"*1.)

e The lines are replaced by great circles and lengths and angles are also replaced.

e The transformation group is O(n + 1).

Spherical trigonometry

e Many spherical triangle theorems exist... http://mathworld.wolfram.
com/SphericalTrigonometry.html

e Such a triangle is classified by their angles 6y, 61, 6> satisfying

9() + 01 + 02 > T (l)
0; < 91'_;,_1 + 91'_;,_2 — 7,1 € Z3. 2)


http://mathworld.wolfram.com/SphericalTrigonometry.html
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Affine geometry

Affine geometry
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A vector space R™ becomes an affine space by forgetting the origin.

An affine transformation of R™ is one given by z — Az + b for A € GL(n,R)
and b € R™. This notion is more general than that of rigid motions.

The Euclidean space R™ with the group Af f(R™) = GL(n,R) - R™ of affine
transformations form the affine geometry.

Of course, angles and lengths do not make sense. But the notion of lines exists.

The set of three points in a line has an invariant based on ratios of lengths.

Projective geometry

Projective geometry

Projective geometry was first considered from fine art.
Desargues (and Kepler) first considered points at infinity.
Poncelet first added infinite points to the euclidean plane.

Projective transformations are compositions of perspectivities. Often, they send
finite points to infinite points and vice versa. (i.e., two planes that are not paral-
lel).



The added points are same as ordinary points up to projective transformations.

Lines have well defined infinite points and are really circles topologically.

Some notions lose meanings. However, many interesting theorems can be proved.
Duality of theorems plays an interesting role.

See for an interactive course: http://www.math.poly.edu/courses/
projective_geometry/

andhttp://demonstrations.wolfram.com/TheoremeDePappusFrench/,
http://demonstrations.wolfram.com/TheoremeDePascalFrench/,
http://www.math.umd.edu/~wphooper/pappus9/pappus.html,
http://www.math.umd.edu/~wphooper/pappus/

Formal definition with topology is given by Felix Klein using homogeneous co-
ordinates.

The projective space RP™ is R"T1 — {0}/ ~ where ~ is given by v ~ w if
v =swfors eR.

Each point is given a homogeneous coordinates: [v] = [z, Z1, ..., Zy].

The projective transformation group PGL(n+1,R) = GL(n+1,R)/ ~ acts on
R P™ by each element sending each ray to a ray using the corresponding general
linear maps.

Here, each element of g of PGL(n + 1, R) acts by [v] — [¢'(v)] for a represen-
tative ¢’ in GL(n + 1,R) of g. Also any coordinate change can be viewed this
way.

The affine geometry can be "imbedded": R™ can be identified with the set of
points in RP™ where x is not zero, i.e., the set of points {[1,z1, Z2, ..., ]}
This is called an affine patch. The subgroup of PGL(n + 1,R) fixing R"™ is
precisely Af f(R™) = GL(n,R) - R™.

The subspace of points {[0, 21, Z2, ..., 5]} is the complement homeomorphic to
RP" 1 This is the set of infinities, i.e., directions in RP™.

From affine geometry, one can construct a unique projective geometry and con-
versely using this idea. (See Berger for the complete abstract approach.)
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http://www.math.poly.edu/courses/projective_geometry/
http://demonstrations.wolfram.com/TheoremeDePappusFrench/
http://demonstrations.wolfram.com/TheoremeDePascalFrench/
http://www.math.umd.edu/~wphooper/pappus9/pappus.html
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e A subspace is the set of points whose representative vectors satisfy a homoge-
neous system of linear equations. The subspace in R"*! corresponding to a
projective subspace in RP"™ in a one-to-one manner while the dimension drops
by 1.

e The independence of points are defined. The dimension of a subspace is the
maximal number of independent set minus 1.

e A hyperspace is given by a single linear equation. The complement of a hyper-
space can be identified with an affine space.

e Aline is the set of points [v] where v = sv1 +tvs for s, ¢ € R for the independent
pair vy, vo. Acutally a line is RP! or a line R! with a unique infinity.

e Cross ratios of four points on a line (z,y, z,¢). There is a unique coordinate
system so that z = [1,0],y = [0,1],z = [1,1],t = [b,1]. Thus b = b(x,y, 2, t)
is the cross-ratio.

e If the four points are on R!, the cross ratio is given as

(21 — 23)(22 — 24)
(21 — 2z4)(22 — 23)

(z,y;2,t) =
if we can write

T = [17 Zl]a Yy = [17 ZQ]a z = [15 Z3]at = [1; 24]
e One can define cross ratios of four hyperplanes meeting in a projective subspace

of codimension 2.

e For us n = 2 is important. Here we have a familiar projective plane as topolog-
ical type of RP?, which is a Mobius band with a disk filled in at the boundary.
http://www.geom.uiuc.edu/zoo/toptype/pplane/cap/

2.5 Conformal geometry

Conformal geometry

e Reflections of R™. The hyperplane P(a,t) given by a cot z = b. Then p(x) =
x+2(t—a-x)a.

e Inversions. The hypersphere S(a,r) given by |z — a| = r. Then o(z) = a +
(52 - a).



http://www.geom.uiuc.edu/zoo/toptype/pplane/cap/

We can compactify R" to R" = §» by adding infinity. This can be accom-
plished by a stereographic projection from the unit sphere S™ in R"*! from the
northpole (0,0, ...,1). Then these reflections and inversions induce conformal
homeomorphisms.

The group of transformations generated by these homeomorphisms is called the
Mobius transformation group.

They form the conformal transformation group of R™ = S".

For n = 2, R? is the Riemann sphere C and a Mobius transformation is a either
a fractional linear transformation of form

az+b

m,adfbc%o,a,b,c,dEC

or a fractional linear transformation pre-composed with the conjugation map
zZ = Z.

In higher-dimensions, a description as a sphere of null-lines and the special
Lorentizian group exists.

Poincare extensions

2.6

We can identify E"~! with E"~! x {O} in E™.

We can extend each Mobius transformation of £"~! to E™ that preserves the
upper half space U: We extend reflections and inversions in the obvious way.

The Mobius transformation of E™ that preserves the open upper half spaces are
exactly the extensions of the Mobius transformations of £~ 1.

M(U™) = M(E"1).
We can put the pair (U™, E"~1) to (B",S"!) by a Mobius transformation.

Thus, M (U™) is isomorphic to M (S™~!) for the boundary sphere.

Hyperbolic geometry

Lorentzian geometry

e A hyperbolic space H" is defined as a complex Riemannian manifold of constant

curvature equal to —1.

e Such a space cannot be realized as a submanifold in a Euclidean space of even

very large dimensions.

e Butitis realized as a "sphere" in a Lorentzian space.



A Lorentzian space is R*" with an inner product

Ty =—ToYo +T1Yy1+  +Tn-1Yn—1+ Tn¥Yn.

A Lorentzian norm ||z|| = (z - y)'/2, a positive, zero, or positive imaginary
number.

One can define Lorentzian angles.

The null vectors form a light cone divide into positive, negative cone, and 0.

Space like vectors and time like vectors and null vectors.

Ordinary notions such as orthogonality, orthonormality,...

Lorentz group

e A Lorentzian transformation is a linear map preserving the inner-product.

e For J the diagonal matrix with entries —1,1, ..., 1, A'tJA = J iff Ais a Lorentzian
matrix.

e A Lorentzian transformation sends time-like vectors to time-like vectors. It is
either positive or negative.

e The set of Lorentzian transformations form a Lie group O(1,n).

e The set of positive Lorentzian transformations form a Lie subgroup PO(1, n).

Hyperbolic space

e Given two positive time-like vectors, there is a time-like angle
z -y = [[zll|lyllcoshn(z, y)

e A hyperbolic space is an upper component of the submanifold defined by ||z||> =
—loraz? =1+a%+ -+ 22. This is a subset of a positive cone.

e Topologically, it is homeomorphic to R”.
e One induces a metric from the Lorentzian space which is positive definite.

e This gives us a Riemannian metric of constant curvature —1. (The computation
is very similar to the computations for the sphere.)

e PO(1,n) is the isometry group of H™ which is homogeneous and directionless.

e A hyperbolic line is an intersection of H™ with a time-like two-dimensional
vector subspace.

e The hyperbolic sine law, The first law of cosines, The second law of cosines...


http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/mnkw/

e One can assign any interior angles to a hyperbolic triangle as long as the sum is
less than 7.

e One can assign any lengths to a hyperbolic triangle.

e The triangle formula can be generalized to formula for quadrilateral, pentagon,
hexagon.

e Basic philosophy here is that one can push the vertex outside and the angle be-
comes distances between lines. (See Ratcliffe, http://online.redwoods
cc.ca.us/instruct/darnold/staffdev/Assignments/sinandcos.
pdf)

e hyperbolic law of sines:

sin A/ sinha = sin B/sinh b = sin C/ sinh ¢

e hyperbolic law of cosines:
cosh ¢ = cosh a cosh b — sinh asinh bcos C

cosh ¢ = (cosh A cosh B + cos C')/ sinh A sinh B

Beltrami-Klein models of hyperbolic geometry

e Beltrami-Klein model is directly obtained from the hyperboloid model.

o di(P,Q) = 1/2log|(AB, PQ)| where A, P,Q, B are on a segment with end-
points A, B and
AP BQ
AB,PQ) = |——=]|.
(15.7Q) = | 51 50
e There is an imbedding from H™ onto an open ball B in the affine patch R™ of
RP™. This is standard radial projection R"** — {0} — RP™.

e B can be described as a ball of radius 1 with center at O.

e The isometry group PO(1, n) also maps injectively to a subgroup of PGL(n +
1,R) that preserves B.

e The projective automorphism group of B is precisely this group.

e The metric is induced on B. This is precisely the metric given by the log of the
cross ratio. Note that A(¢) = (cosht,sinht, 0, ..., 0) define a unit speed geodesic
in H™. Under the Riemannian metric, we have d(e1, (cosht,sinh¢,0,...,0)) = ¢
for ¢ positive.

e Under dj, we obtain the same. Since any geodesic segment of same length is
congruent under the isometry, we see that the two metrics coincide. Betrami-
Klein model
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e Beltrami-Klein model is nice because you can see outside. The outside is the
anti-de Sitter spacehttp://en.wikipedia.org/wiki/Anti_de_Sitter_
space

e Also, we can treat points outside and inside together.

e Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal
by the Lorentzian inner-product) A point in the model is dual to a hyperplane
outside. Infact any subspace of dimenstion ¢ is dual to a subspace of dimension
n — ¢ — 1 by orthogonality.

e For n = 2, the duality of a line is given by taking tangent lines to the disk at the
endpoints and taking the intersection.

e The distance between two hyperplanes can be obtained by two dual points. The
two dual points span an orthogonal plane to the both hyperperplanes and hence
provide a shortest geodesic.

The conformal ball model (Poincare ball model)

e The stereo-graphic projection H" to the plane P given by oy = 0 from the point
(-1,0,...,0).

e The formula for the map x : H™ — P is given by

K($)=< A — >
T+y "14wy)’

where the image lies in an open ball of radius 1 with center O in P. The inverse
is given by
_ (14?2 22y
C(I)_ <1_|x2?1_x|27"'71_|$|27 .

e Since this is a diffeomorphism, B has an induced Riemannian metric of constant
curvature —1.

e We show
2l — y?
(1= |=[*)(1 = y[)’
and inversions acting on B preserves the metric. Thus, the group of Mobius
transformations of B preserve metric.

coshdp(z,y) =1+

e The corresponding Riemannian metric is g;; = 24;;/(1 — |z|?)2.

o It follows that the group of Mobius transformations acting on B is precisely the
isometry group of B. Thus, Isom(B) = M(S"1).

e Geodesics would be lines through O and arcs on circles perpendicular to the
sphere of radius 1.


http://en.wikipedia.org/wiki/Anti_de_Sitter_space
http://en.wikipedia.org/wiki/Anti_de_Sitter_space

The upper-half space model.

Now we put B to U by a Mobius transformation. This gives a Riemannian metric
constant curvature —1.

We have by computations cosh dy(z,y) = 1+ |z —y|?/22,,y,, and the Rieman-
nian metric is given by ¢;; = &;;/x2. Then I(U) = M(U) = M(E"™1).

Geodesics would be arcs on lines or circles perpendicular to E™ 1.

Since E' is a circle and E? is the complex sphere, we obtain [ somT(B?) =
PSL(2,R) and Isom™(B3) = PSL(2,C).

Orientation-preserving isometries of hyperbolic plane can have at most one fixed
point. elliptic, hyperbolic, parabolic.

ze? 2z az,a#tl,aeRY 2 241

Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.

Up to conjugations, they are represented as Mobius transformations which has
forms

z— az, Ima #0,|al # 1.
-z az,a# 1,a € RT.
2 €020 #£0.

-z z+ 1.

3 Discrete group actions

Discrete groups and discrete group actions

A discrete group is a group with a discrete topology. (Usually a finitely generated
subgroup of a Lie group.) Any group can be made into a discrete group.

We have many notions of a group action I' x X — X:

The action is effective, is free

The action is discrete if I" is discrete in the group of homeomorphisms of
X with compact open topology.

The action has discrete orbits if every x has a neighborhood U so that the
orbit points in U is finite.

The action is wandering if every x has a neighborhood U so that the set of
elements v of I" so that v(U) N U # ( is finite.

The action is properly discontinuous if for every compact subset K the set
of v such that K N (K) # 0 is finite.

10



e discrete action < discrete orbit < wandering < properly discontinuous. This is a
strict relation (Assuming X is a manifold.)

e The action is wandering and free and gives manifold quotient (possibly non-
Hausdorff)

e The action of T is free and properly discontinuous if and only if X/T" is a mani-
fold quotient (Hausdorff) and X — X/I" is a covering map.

e ' a discrete subgroup of a Lie group G acting on X with compact stabilizer.
Then T" acts properly discontinuously on X.

e A complete (X, G) manifold is one isomorphic to X/T".

e Suppose X is simply-connected. Given a manifold M the set of complete (X, G)-
structures on M up to (X, G)-isotopies are in one-to-one correspondence with
the discrete representations of (M) — G up to conjugations.

Examples

e R? — {O} with the group generated by g1 : (x,y) — (2,y/2). This is a free
wondering action but not properly discontinuous.

e R? — {0} with the group generated by g : (z,y) — (2x,2y). (free, properly
discontinuous.)

e The modular group PSL(2,Z) the group of Mobius transformations or isome-
tries of hyperbolic plane given by z > fzz_tg for integer a, b, ¢, d and ad — bc =
1. http://en.wikipedia.org/wiki/Modular_group. This is not a

free action.

Convex polyhedrons

o A convex subset of H" is a subset such that for any pair of points, the geodesic
segment between them is in the subset.

e Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space,
is a subset of an affine patch R™. In R™, one can talk about convex hulls.

e Some facts about convex sets:

— The dimension of a convex set is the least integer m such that C' is con-
tained in a unique m-plane C in H".

— The interior C?, the boundary OC' are defined in C.

— The closure of C is in C. The interior and closures are convex. They
are homeomorphic to an open ball and a contractible domain of dimension
equal to that of C' respectively.

11
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Convex polytopes

e A side C'is a nonempty maximal convex subset of 9C'.

e A convex polyhedron is a nonempty closed convex subset such that the set of
sides is locally finite in H™.

e A polytope is a convex polyhedron with finitely many vertices and is the convex
hull of its vertices inH ™.

e A polyhedron P in H™ is a generalized polytope if its closure is a polytope in
the affine patch. A generalized polytope may have ideal vertices.
Examples of Convex polytopes
e A compact simplex: convex hull of n + 1 points in H™.

o Start from the origin expand the infinitesimal euclidean polytope from an interior
point radially. That is a map sending  — sx for s > 0 and « is the coordinate
vector of an affine patch using in fact any vector coordinates. Thus for any
Euclidean polytope, we obtain a one parameter family of hyperbolic polytopes.

Regular dodecahedron with all edge angles /2

Fundamental domain of discrete group action

e LetI be a group acting on X.

o A fundamental domain for T is an open domain F so that {gF|g € T'} is a
collection of disjoint sets and their closures cover X.

e The fundamental domain is locally finite if the above closures are locally finite.

12



e The Dirichlet domain for u € X is the intersection of all Hy(u) = {z €
X|d(x,u) < d(z,gu)}. Under nice conditions, D(u) is a convex fundamen-
tal polyhedron.

e The regular octahedron example of hyperbolic surface of genus 2 is an example
of a Dirichlet domain with the origin as u.

Tessellations

e A tessellation of X is a locally-finite collection of polyhedra covering X with
mutually disjoint interiors.

e Convex fundamental polyhedron provides examples of exact tessellations.
e If P is an exact convex fundamental polyhedron of a discrete group I" of isome-

tries acting on X, then I is generated by ® = {g € I'|P N ¢g(P) is a side of P}.

Side pairings and Poincare fundamental polyhedron theorem

e Given a side S of an exact convex fundamental domain P, there is a unique
element gg such that S = P N gs(P). And S’ = g5 () is also a side of P.

® gg = g§1 since 8" = PN ggl.
e ['-side-pairing is the set of gg for sides S of P.

~

e The equivalence class at P is generated by x = z’ if there is a side-pairing
sending x to &’ for z, 2’ € P.

e [z]is finite and [x] = P NT.
e Cycle relations (This should be cyclic):

- Let S; = S for a given side S. Choose the side R of S;. Obtain Sj. Let
Ss be the side adjacent to S so that gg, (5] N S2) = R.

— Let S;+1 be the side of P adjacent to S, such that gg, (S; N Si+1) = S;_1 N
S;.

e Then

— There is an integer [ such that S;; = .5; for each i.

- 22:1 005}, Si+1) = 2 /k.
- gs,9s,--.-gs, has order k.

e Example: the octahedron in the hyperbolic plane giving genus 2-surface.

e The period is the number of sides coming into a given side R of codimension
two.

13



(a17 D)’ (a]‘/7 K)’ (b1/7 K)? (b17 B)’ (a]‘/’ B)? (a]" C)? (b17 C)’
(b1, H),(a2,H), (a2, E), (b2', E), (b2, F), (a2, F), (a2, G),
(b2,G), (62, D), (a1, D), (al/, K), ...

e Poincare fundamental polyhedron theorem is the converse. (See Kapovich P.
80-84):

e Given a convex polyhedron P in X with side-pairing isometries satisfying the
above relations, then P is the fundamental domain for the discrete group gener-
ated by the side-pairing isometries.

e If every k equals 1, then the result of the face identification is a manifold. Oth-
erwise, we obtain orbifolds.

e The results are always complete.

e See Jeff Weeks http://www.geometrygames.org/CurvedSpaces/|

Reflection groups

o A discrete reflection group is a discrete subgroup in G generated by reflections
in X about sides of a convex polyhedron. Then all the dihedral angles are sub-
multiples of 7.

e Then the side pairing such that each face is glued to itself by a reflection satisfies
the Poincare fundamental theorem.

e The reflection group has presentation {.5; : (.S; Sj)kij} where k;; = 1 and k;; =
kj,‘.

e These are examples of Coxeter groups. http://en.wikipedia.org/wiki/
|Coxeter_group|

14
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Icosahedral reflection group
One has a regular dodecahedron with all edge angles 7/2 and hence it is a funda-
mental domain of a hyperbolic reflection group.

Triangle groups
e Find a triangle in X with angles submultiples of .
e We divide into three cases 7w/a + 7 /b+ m/c > 0,=0,< 0.
e We can always find ones for any integers a, b, c.

- > 0 cases: (2,2,¢),(2,3,3),(2,3,4),(2,3,5) corresponding to dihedral
group of order 4c, a tetrahedral group, octahedral group, and icosahedral
group.

- =0cases: (3,3,3), (2,4,4), (2,3,6).

— < 0 cases: Infinitely many hyperbolic tessellation groups.

(2,4, 8)-triangle group

o The ideal example http://egl.math.umd.edu/software.html

Higher-dimensional examples

e To construct a 3-dimensional examples, obtain a Euclidean regular polytopes
and expand it until we achieve that all angles are 7/3. Regular octahedron with
angles /2. These are ideal polytope examples.

e Higher-dimensional examples were analyzed by Vinberg and so on. For exam-
ple, there are no hyperbolic reflection group of compact type above dimension
> 30.

15
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Crystallographic groups

e A crystallographic group is a discrete group of the rigid motions whose quotient
space is compact.

e Bieberbach theorem:

— A group is isomorphic to a crystallographic group if and only if it contains a
subgroup of finite index that is free abelian of rank equal to the dimension.

— The crystallographic groups are isomorphic as abstract groups if and only
if they are conjugate by an affine transformation.

Crystallographic groups

e There are only finitely many crystallographic group for each dimension since
once the abelian group action is determined, its symmetry group can only be
finitely many.

o 17 wallpaper groups for dimension 2. http://www.clarku.edu/~djoyce/
wallpaper/|and see Kali by Weeks http://www.geometrygames.org/Kali/index.html.

e 230 space groups for dimension 3. Conway, Thurston, ... http://www.
emis.de/Jjournals/BAG/vol.42/no.2/b42h2con.pdf

e Further informations: http://www.ornl.gov/sci/ortep/topology.
html
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