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Some helpful references

e Bredon, Introduction to compact transformation groups, Academic Press
e Hsiang, Cohomology theory of topological transformation group, Springer, 1975

e Soren Illman, Smooth equivariant triangulations of G-manifolds for G a finite
group, Math. Ann. 233, 199-220 (1978)

2 Compact group actions

e A group action G x X — X with e(x) = « for all x and gh(x) = g(h(x)). That
is, G — Homeo(X) so that the product operation becomes compositions.

e We only need the result for finite group actions.

e An equivariant map ¢ : X — Y between G-spaces is a map so that ¢(g(z)) =

9(¢(z)).
e An isotropy subgroup G, = {g € G|g(x) = z}.
o Gy = 9Gzg™1. Gy C Gy for an equivariant map ¢.

e Tietze-Gleason Theorem: GG a compact group acting on X with a closed invariant
set A. Let GG also act linearly on R™. Then any equivariant ¢ : A — R" extends
togp: X — R™.



Orbit spaces

e Anorbitof z is G(z) = {g(x)|g € G}.
e (G/G, — G(x) is one-to-one onto continuous function.

e An orbit type is given by the conjugacy class of GG, in GG. The orbit types form a
partially ordered set.

e Denote by X/G the space of orbits with quotient topology.
e For A C X, G(A) = U, cq 9(A) is the saturation of A.
e Properties:

- 7: X — X/G is an open, closed, and proper map.
X /G is Hausdorff.
X is compact iff X/G is compact.

X is locally compact iff X/G is locally compact.

Orbit spaces: Examples

e Let X = G x Y and G acts as a product.

e For k, g relatively prime, the action of Zj on S3 in C? generated by a matrix

eQ‘n”i/k 0
0 eQ‘n’qi/k

giving us a Lens space.

e We can also consider S'-actions given by

eZTrkiO 0
0 e?rrqie

Then it has three orbit types.

o Consider in general the action of torus 7™ -action on C™ given by
(€1 ey ) Y1y ey Yn) = (CLYLs ooy CnUn), il = 1,45 € C.

Orbit spaces: Examples

e Then there is a homeomorphism h : C"/T™ — (R™)™ given by sending

(yla 7yn) = (|y1‘2’ ot |y"|2)

The interiors of sides represent different orbit types.



H a closed subgroup of Lie group G. The left-coset space G/H where G acts
on the right also.

G/G, — G(z) is given by gG, — g(x) is a homeomorphism if G is compact.

Twisted product: X a right G-space, Y a left G-space. A left action is given by
g(z,y) = (xg~1, gy). The twisted product X x Y is the quotient space.

p : X — B is a principal bundle with G acting on the left. F' a right G-space.
Then F' X X is the associated bundle.

Orbit spaces: Bad examples

e The Conner-Floyd example: There is an action of Z,. for » = pq,p, q relatively
prime, on an Euclidean space of large dimensions without stationary points.

e Proof:
- Find a simplicial action Z,, on $* = S' % S without stationary points
obtained by joining action of Z,, on S* and Z, on the second S*.

— Find an equivariant simplicial map h : S — S3 which is homotopically
trivial.

— Build the infinite mapping cylinder which is contactible and imbed it in an
Euclidean space of high-dimensions where Z,, acts orthogonally.

— Find the contractible neighborhood. Taking the product with the real line
makes it into a Euclidean space.
Orbit spaces: Bad examples

e Hsiang-Hsiang: If G is any compact, connected, nonabelian Lie group, then
there is an action of G on any euclidean space of sufficiently high dimension for
which the fixed point set F' has any given homotopy type. (£’ could be empty.)

Twisted product

e (G a compact subgroup, X right G-space and Y left G-space. X Xg Y is the
quotient space of X x Y where [zg,y] ~ [z, gy] for g € G.

e H a closed subgroup of G G x g Y is a left G-space by the action g[¢’,a] =
[g¢’, a]. This sends equivalence classes to themselves.

The inclusion A — G x g A induces a homeomorphism A/H — (G xg A)/G.

The isotropy subgroup at [e,a): [e,a] = gle,a] = [g,a] = [A™!, h(a)]. Thus,
G[e,a] =H,.

e Example: Let G = S! and A be the unit-disk and H = Z3 generated by e>"/3,
G and H acts in a standard way in A. Then consider G x g A.



Tubes and slices

e X a G-space. P an orbit of type G/H. A tube about P is a G-equivariant
imbedding G x g A — X onto an open neighborhood of P where A is a some
space where H acts on.

e Every orbit passes the image of e x A.
e P = G(z) for x = [e, a] where a is the stationary point of H in A.
e In general G, = H, C H for z = [e, a.

o Aslice: v € X, Asetz € S such that G,(S) = S. Then S is a slice if
G x¢, S — X so that [g, s] — g(s) is a tube about G .

e Sisaslice iff S is the image of e x A for some tube.

Tubes and slices

e Letx € S and H = G,,. Then the following are equivalent:

— Thereisatube ¢ : G x g A — X about G(x) such that ¢([e, A]) = S.
— Sisaslice at x.

— G(S) is an open neighborhood of G(z) and there is an equivariant retrac-
tion f : G(S) — G(x) with f~1(z) = S.

o It would be a good exercise to apply these theories to above examples....
The existence of tubes

e Let X be a completely regular G-space. There is a tube about any orbit of a
complete regular G-space with G compact. (Mostow)

e Proof:

Let z¢ have an isotropy group H in G.

Find an orthogonal representation of GG in R™ with a point vy whose isotropy
group is H.

There is an equivalence G(z) and G(vy). Extend this to a neighborhood.

— For R”, we can find the equivariant retraction. Transfer this on X.

e If GG is a finite group acting on a manifold, then a tube is a union of disjoint open
sets and a slice is an open subset where GG, acts on.



Path-lifting and covering homotopy theorem.

e Let X be a G-space, G a compact Lie group, and f : I — X/G any path. Then
there exists a lifting f : I — X sothatwo f' = f.

e Let f : X — Y be an equivariant map. Let /' : X/G — Y/G be an induced
map. Let F’ : X/G x I — Y /G be a homotopy preserving orbit types that starts
at f'. Then there is an equivariant F' : X x I — Y lifting F” starting at f.

e If (G is finite and X a smooth manifold with a smooth G-action and if the func-

tions are smooth, then the lifts can be chosen to be also smooth.

Locally smooth actions

e M a G-space, G a compact Lie group, P an orbit of type G/H. V a vector
space where H acts orthogonally. Then a linear tube in M is a tube of the form
¢:GxgV — M.

e Let S be aslice. S is a linear slice if G xg, S — M given by [g,s] — g(s)
is equivalent to a linear slice. (If G,-space S is equivalent to the orthogonal
G;-space.)

o If there is a linear tube about each orbit, then M is said to be locally smooth.

Locally smooth actions

e There exists a maximum orbit type G/H for G. (That is, H is conjugate to a
subgroup of each isotropy group.)

e Proof:
— Near each tube, we find the maximal orbit types has to be dense and open.
e The maximal orbits so obtained are called principal orbits.

e If M is a smooth manifold and compact Lie G acts smoothly, this is true.

Manifold

M a smooth manifold, G a compact Lie group acting smoothly on M.

If G is finite, then this is equivalent to the fact that each i, : M — M given by
x — g(x) is a diffeomorphism.

Let n be the dimension of M and d the dimension of the maximal orbit.

M* = M/G is a manifold with boundary if n — d < 2.



Manifold

e Proof:

Let £ = n — d, the codimension of the principal orbits.
Consider a linear tube G x g V. The orbit space (G x g V)* =2 V*.

Let .S be the unit sphere in V. Then V* is a cone over S*.
dim M* = dim V* = dim S* + 1.

If kK = 0, then M* is discrete. If M is a sphere, then M* is one or two
points.

— If £ =1, then M* is locally a cone over one or two points. Hence M* is a
1-manifold.

If £ = 2, then M* is locally a cone over an arc or a circle. (as S* is a
1-manifold by the previous step.)

e Example: Z, action on R? generated by the antipodal map. The result is not a
manifold.

Smooth actions

e Recall smooth actions.

e (G-compact Lie group acting smoothly on M. Then there exists an invariant
Riemannian metric on M.

e G(x) is a smooth manifold. G/G, — G(z) is a diffeomorphism.

e Exponential map: For X € T}, M, there is a unique geodesic yx with tangent
vector at p equal to X. The exponential map exp : T, M — M is defined by
X — yx(1).

e If A is an invariant smooth submanifold, then A has an open invariant tubular
neighborhood.

e The smooth action of a compact Lie group is locally smooth.
e Proof:

— Use the fact that orbits are smooth submanifolds and the above item.

Some facts needed later

e The subspace M) of same orbit type G/ H is a smooth locally-closed subman-
ifold of M.

e A aclosed invariant submanifold. Then any two open (resp. closed) invariant
tubular neighborhoods are equivariantly isotopic.



Newman’s theorem

e Let M be a connected topological n-manifold. Then there is a finite open cov-
ering U of the one-point compactification of M such that there is no effective
action of a compact Lie group with each orbit contained in some member of U/.
(Proof: algebraic topology)

e If G is a compact Lie group acting effectively on M, then M is nowhere dense.

Equivariant triangulations

e Soren Illman proved:

e Let G be a finite group. Let M be a smooth G-manifold with or without bound-
ary. Then we have:

— There exists an equivariant simplicial complex K and a smooth equivariant
triangulation h : K — M.

- Ifh: K — M and hy : L — M are smooth triangulations of M, there
exist equivariant subdivisions K’ and L’ of K and L, respectively, such
that K’ and L' are G-isomorphic.

o This result was widely used once a proof by Yang (1963) was given. But an error
was discovered by Siebenmann (1970) and proved in 1977.
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