
1 Introduction
Outline

• Section 3: Topology of 2-orbifolds: Compact group actions

– Compact group actions

– Orbit spaces.

– Tubes and slices.

– Path-lifting, covering homotopy

– Locally smooth actions

– Smooth actions

– Equivariant triangulations

– Newman’s theorem

Some helpful references

• Bredon, Introduction to compact transformation groups, Academic Press

• Hsiang, Cohomology theory of topological transformation group, Springer, 1975

• Soren Illman, Smooth equivariant triangulations of G-manifolds for G a finite
group, Math. Ann. 233, 199–220 (1978)

2 Compact group actions
• A group actionG×X → X with e(x) = x for all x and gh(x) = g(h(x)). That

is, G→ Homeo(X) so that the product operation becomes compositions.

• We only need the result for finite group actions.

• An equivariant map φ : X → Y between G-spaces is a map so that φ(g(x)) =
g(φ(x)).

• An isotropy subgroup Gx = {g ∈ G|g(x) = x}.

• Gg(x) = gGxg
−1. Gx ⊂ Gφ(x) for an equivariant map φ.

• Tietze-Gleason Theorem: G a compact group acting onX with a closed invariant
set A. Let G also act linearly on Rn. Then any equivariant φ : A→ Rn extends
to φ : X → Rn.



Orbit spaces

• An orbit of x is G(x) = {g(x)|g ∈ G}.

• G/Gx → G(x) is one-to-one onto continuous function.

• An orbit type is given by the conjugacy class of Gx in G. The orbit types form a
partially ordered set.

• Denote by X/G the space of orbits with quotient topology.

• For A ⊂ X , G(A) =
⋃
g∈G g(A) is the saturation of A.

• Properties:

– π : X → X/G is an open, closed, and proper map.

– X/G is Hausdorff.

– X is compact iff X/G is compact.

– X is locally compact iff X/G is locally compact.

Orbit spaces: Examples

• Let X = G× Y and G acts as a product.

• For k, q relatively prime, the action of Zk on S3 in C2 generated by a matrix[
e2πi/k 0

0 e2πqi/k

]
giving us a Lens space.

• We can also consider S1-actions given by[
e2πkiθ 0

0 e2πqiθ

]
Then it has three orbit types.

• Consider in general the action of torus Tn-action on Cn given by

(c1, ..., cn)(y1, ..., yn) = (c1y1, ..., cnyn), |ci| = 1, yi ∈ C.

Orbit spaces: Examples

• Then there is a homeomorphism h : Cn/Tn → (R+)n given by sending

(y1, ..., yn) 7→ (|y1|2, ..., |yn|2).

The interiors of sides represent different orbit types.
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• H a closed subgroup of Lie group G. The left-coset space G/H where G acts
on the right also.

• G/Gx → G(x) is given by gGx 7→ g(x) is a homeomorphism if G is compact.

• Twisted product: X a right G-space, Y a left G-space. A left action is given by
g(x, y) = (xg−1, gy). The twisted product X ×G Y is the quotient space.

• p : X → B is a principal bundle with G acting on the left. F a right G-space.
Then F ×G X is the associated bundle.

Orbit spaces: Bad examples

• The Conner-Floyd example: There is an action of Zr for r = pq,p, q relatively
prime, on an Euclidean space of large dimensions without stationary points.

• Proof:

– Find a simplicial action Zpq on S3 = S1 ∗ S1 without stationary points
obtained by joining action of Zp on S1 and Zq on the second S1.

– Find an equivariant simplicial map h : S3 → S3 which is homotopically
trivial.

– Build the infinite mapping cylinder which is contactible and imbed it in an
Euclidean space of high-dimensions where Zpq acts orthogonally.

– Find the contractible neighborhood. Taking the product with the real line
makes it into a Euclidean space.

Orbit spaces: Bad examples

• Hsiang-Hsiang: If G is any compact, connected, nonabelian Lie group, then
there is an action of G on any euclidean space of sufficiently high dimension for
which the fixed point set F has any given homotopy type. (F could be empty.)

Twisted product

• G a compact subgroup, X right G-space and Y left G-space. X ×G Y is the
quotient space of X × Y where [xg, y] ∼ [x, gy] for g ∈ G.

• H a closed subgroup of G G ×H Y is a left G-space by the action g[g′, a] =
[gg′, a]. This sends equivalence classes to themselves.

• The inclusion A→ G×H A induces a homeomorphism A/H → (G×H A)/G.

• The isotropy subgroup at [e, a]: [e, a] = g[e, a] = [g, a] = [h−1, h(a)]. Thus,
G[e,a] = Ha.

• Example: Let G = S1 and A be the unit-disk and H = Z3 generated by e2π/3.
G and H acts in a standard way in A. Then consider G×H A.
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Tubes and slices

• X a G-space. P an orbit of type G/H . A tube about P is a G-equivariant
imbedding G ×H A → X onto an open neighborhood of P where A is a some
space where H acts on.

• Every orbit passes the image of e×A.

• P = G(x) for x = [e, a] where a is the stationary point of H in A.

• In general Gx = Ha ⊂ H for x = [e, a].

• A slice: x ∈ X , A set x ∈ S such that Gx(S) = S. Then S is a slice if
G×Gx

S → X so that [g, s]→ g(s) is a tube about Gx.

• S is a slice iff S is the image of e×A for some tube.

Tubes and slices

• Let x ∈ S and H = Gx. Then the following are equivalent:

– There is a tube φ : G×H A→ X about G(x) such that φ([e,A]) = S.

– S is a slice at x.

– G(S) is an open neighborhood of G(x) and there is an equivariant retrac-
tion f : G(S)→ G(x) with f−1(x) = S.

• It would be a good exercise to apply these theories to above examples....

The existence of tubes

• Let X be a completely regular G-space. There is a tube about any orbit of a
complete regular G-space with G compact. (Mostow)

• Proof:

– Let x0 have an isotropy group H in G.

– Find an orthogonal representation ofG in Rn with a point v0 whose isotropy
group is H .

– There is an equivalence G(x0) and G(v0). Extend this to a neighborhood.

– For Rn, we can find the equivariant retraction. Transfer this on X .

• If G is a finite group acting on a manifold, then a tube is a union of disjoint open
sets and a slice is an open subset where Gx acts on.
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Path-lifting and covering homotopy theorem.

• Let X be a G-space, G a compact Lie group, and f : I → X/G any path. Then
there exists a lifting f ′ : I → X so that π ◦ f ′ = f .

• Let f : X → Y be an equivariant map. Let f ′ : X/G → Y/G be an induced
map. Let F ′ : X/G×I → Y/G be a homotopy preserving orbit types that starts
at f ′. Then there is an equivariant F : X × I → Y lifting F ′ starting at f .

• If G is finite and X a smooth manifold with a smooth G-action and if the func-
tions are smooth, then the lifts can be chosen to be also smooth.

Locally smooth actions

• M a G-space, G a compact Lie group, P an orbit of type G/H . V a vector
space where H acts orthogonally. Then a linear tube in M is a tube of the form
φ : G×H V →M .

• Let S be a slice. S is a linear slice if G ×Gx S → M given by [g, s] → g(s)
is equivalent to a linear slice. (If Gx-space S is equivalent to the orthogonal
Gx-space.)

• If there is a linear tube about each orbit, then M is said to be locally smooth.

Locally smooth actions

• There exists a maximum orbit type G/H for G. (That is, H is conjugate to a
subgroup of each isotropy group.)

• Proof:

– Near each tube, we find the maximal orbit types has to be dense and open.

• The maximal orbits so obtained are called principal orbits.

• If M is a smooth manifold and compact Lie G acts smoothly, this is true.

Manifold

• M a smooth manifold, G a compact Lie group acting smoothly on M .

• If G is finite, then this is equivalent to the fact that each ig : M → M given by
x 7→ g(x) is a diffeomorphism.

• Let n be the dimension of M and d the dimension of the maximal orbit.

• M∗ = M/G is a manifold with boundary if n− d ≤ 2.
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Manifold

• Proof:

– Let k = n− d, the codimension of the principal orbits.

– Consider a linear tube G×K V . The orbit space (G×K V )∗ ∼= V ∗.

– Let S be the unit sphere in V . Then V ∗ is a cone over S∗.

– dimM∗ = dimV ∗ = dimS∗ + 1.

– If k = 0, then M∗ is discrete. If M is a sphere, then M∗ is one or two
points.

– If k = 1, then M∗ is locally a cone over one or two points. Hence M∗ is a
1-manifold.

– If k = 2, then M∗ is locally a cone over an arc or a circle. (as S∗ is a
1-manifold by the previous step.)

• Example: Z2 action on R3 generated by the antipodal map. The result is not a
manifold.

Smooth actions

• Recall smooth actions.

• G-compact Lie group acting smoothly on M . Then there exists an invariant
Riemannian metric on M .

• G(x) is a smooth manifold. G/Gx → G(x) is a diffeomorphism.

• Exponential map: For X ∈ TpM , there is a unique geodesic γX with tangent
vector at p equal to X . The exponential map exp : TpM → M is defined by
X 7→ γX(1).

• If A is an invariant smooth submanifold, then A has an open invariant tubular
neighborhood.

• The smooth action of a compact Lie group is locally smooth.

• Proof:

– Use the fact that orbits are smooth submanifolds and the above item.

Some facts needed later

• The subspaceM(H) of same orbit typeG/H is a smooth locally-closed subman-
ifold of M .

• A a closed invariant submanifold. Then any two open (resp. closed) invariant
tubular neighborhoods are equivariantly isotopic.

6



Newman’s theorem

• Let M be a connected topological n-manifold. Then there is a finite open cov-
ering U of the one-point compactification of M such that there is no effective
action of a compact Lie group with each orbit contained in some member of U .
(Proof: algebraic topology)

• IfG is a compact Lie group acting effectively onM , thenMG is nowhere dense.

Equivariant triangulations

• Sören Illman proved:

• Let G be a finite group. Let M be a smooth G-manifold with or without bound-
ary. Then we have:

– There exists an equivariant simplicial complexK and a smooth equivariant
triangulation h : K →M .

– If h : K → M and h1 : L → M are smooth triangulations of M , there
exist equivariant subdivisions K ′ and L′ of K and L, respectively, such
that K ′ and L′ are G-isomorphic.

• This result was widely used once a proof by Yang (1963) was given. But an error
was discovered by Siebenmann (1970) and proved in 1977.
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