3.4. Unitary Operators



Inner product preserving

V, W inner product spaces over F in R or C.
T:V->W.

T preserves inner products if (Ta|Tb) =(a|b)
foralla, bin V.

An isomorphism of V to W is a vector space

isomorphism T:V -> W preserving inner
products.

[1Tall=1lall.



e Theorem 10.V, W f.d. inner product spaces.
dim V =dim W. TFAE.
— (i) T preserve inner product
— (ii) T is an inner product space isomorphism.

— (iii) T carries every orthonormal basis of V to one
of W.

— (iv) T carries some orthonormal basis of V to one
of W.

* Proof. (iv)->(i). Use (Ta;, Ta;) = (a;, a;). Then
a=x,a,+..+x.a, b=ya;+..+y a
Prove (Ta|Tb)=(a|b).



Corollary. V, W f.d. inner product spaces over F.
Then V, W is isomorphic iff dim V =dim W.

* Proof: Take any basis {a,, ..., a,}of Vand a
basis {b,,..., b} of W. Let T:V -> W be so that

Ta,=b. Then by Theorem 10, T is an
isomorphism.

e Theorem 11.V, W, inner product spaces over
F. Then T perserves ips iff | |Ta|| =||a]| | for
allainV.



Definition: A unitary operator of an inner
product space V is an isomorphism V-> V.

The product of two unitary operators is
unitary.

The inverse of a unitary operator exists and is
unitary. (by definition, it exists.)

U is unitary iff for an orthonormal basis
{a,, ..., .}, we have an orthonormal basis
{Ua,, ..., Ua_}



Theorem 12. Let U be a linear operator of an ips V.
Then U is unitary iff U* exists and U*U=I, UU*=I.

Proof: (Ua|b) = (Ua|UU1b)=(a|U2b) forall a, b
in V.

Conversely, assume that U* exists and
U*U=I=UU*. Then U-1=U*.

(Ua|Ub) =(a|U*Ub)=(a|b). U is a unitary
operator.

Definition: A complex matrix A is unitary if
A*A=I.



A real or complex matrix A is orthogonal if A'A

= |.
A real matrix is unitary iff it is orthogonal.

A complex unitary matrix is orthogonal iff it is
real. (<- easy, -> At = Al = A¥*)

Theorem 14. Given invertible nxn matrix B,
there exists a unique lower-triangular

matrix M with positive diagonals so that
MB is unitary.



* Proof: Basis {b,, .., b, }, rows of B.
— Gram-Schmidt orthogonalization gives us

b la.
ak=bk—z( ‘ a’)aj gives us ak=bk—zijbj

2
< lal <

— Let U be a unitary matrix with rows a. /| |a, | |

Let M be given by —”; I yoJ <k
Lower-triangular k

Use r,(AB)=r,(A)B M = 1 =k
=r,,(A)b+..+r._(A)b, Y la, I’

Then U=MB 0,j>k




Uniqueness: M,, M, so that M.B is unitary.
M,B (M,B) =M, (M,) tis unitary.

Lower triangular with positive entries also.
This implies this has to be |.

T*(n) := {lower triangular matrices with
positive diagonals}

This is a group. (i.e., product, inverse are also

in T*(n), use row operations obtaining inverses
to prove this.)



Corollary. B in GL(n). There exists unique N in
T*(n) and U in U(n) so that B = NU.

Proof: B=NU for N unique by Theorem 14.
Since U = N1 B, U is unigue also.

B is unitarily equivalent to A if B=P* A P for a
unitary matrix P.

B is orthogonally equivalent to Aif B=P1 AP
for an orthogonal matrix P.



8.5. Normal operators

V f.d. inner product space.

Tis normal if T*T =TT*.

Self-adjoint operators are normal.
(generalization of self-adjoint property)
We aim to show these are diagonalizable.

Theorem 15. V inner product space. T is a self-
adjoint operator. Then each eigenvalues are
real. For distinct eigenvalues the eigenvectors
are orthogonal.



* Proof: Ta=ca. Thenc(al|a) =(cala)=(Tala) =
(a,Ta)=(a|ca)=c(ala). Thus c=c.

 Tb=db. Then c(a|b)=(Ta|b)=(a|Tb)=
d(a|b)=d(a|b). Since c #b, (a|b)=0.

* Theorem 16. V f.d. ips. Every self-adjoint
operators has a nonzero eigenvector.

* Proof. det(xl —A) has a root. A-cl is singular.

For infinite dim cases, a self-adjoint operator
may not have any nonzero eigenvector. See
Example 29.



Theorem 17. V f.d.ips. T operator. If Wisa T-
inv subspace, then W+ is T* invariant.

Proof: ain W->Tain W. Let b in W-L. (Ta|b)=
O forallain W. Thus (a|T*b) =0 for all ain W.
Hence, T*bis in W,

Theorem 18. V f.d.ips. T self-adjoint operator.
Then there is an orthonormal basis of
eigenvectors of T.

Proof. Start from one a. W = <a>. Take W+
invariant under T. And T is still self-adjoint
there. By induction we are done.



Corollary, nxn hermitian matrix A. There exists
a unitary matrix P s.t. P AP is diagonal.

nxn orthogonal matrix A. There exists an
orthogonal matrix P s.t. P AP is diagonal.

Theorem 19. V f.d.ips. T normal operator.
Then a is an eigenvector for T with value c iff a
is an eigenvector for T* with value c'.

Proof: | |Ua| |?=(Ua|Ua) = (a|U*Ua)=(a|
UU*a)=(U*|U*a)=||U*al|?.

U=T-cl is normal. U*=T*-c’l.

[[T-cl(@)| | = [|T*-c(a)] .



Definition: A complex nxn matrix A is called
normal iff AA* = A*A.

Theorem 20. V f.d.ips. B orthonormal basis.
Suppose that the matrix A of T is upper
triangular. Then T is normal if and only if Ais a
diagonal matrix.

Proof: (<-) B is orthonormal.
If A is diagonalizable, A*A = AA*. Hence, T*T=TT*.

(->) Tnormal. Ta; = A;; a, since Ais upper
triangular. Thus, T*a, = A,,”a, by Theorem 19.
Thus A;=0 for all j > 1.



A, =0.Thus, Ta,=A,,a,.Thus, T*a, = A,," a,
Induction A is diagonal.
Theorem 21. V. f.d.ips. T a linear operator on V.

Then there exists an orthonormal basis for V
where the matrix of T is upper triangular.

Proof. Take an eigenvector a of T*. T*a=ca.
Let W, be the orthogonal complement of a.

W, is invariant under T by Th. 17. dim W, =n-1. By
induction assumption, we obtain an orthonormal
basis a,, a,,.., 3, ;. Add a=a_

Then T is upper triangular. (Ta; is a sum of a,,...,a;)



* Corollary. For any complex nxn matrix A,
there is a unitary matrix U s.t. UAU is upper
triangular.

* Theorem 22. V f.d.i.p.s. T is a normal operator.
Then V has an orthonormal basis of
eigenvectors on T.

* Corollary. Every normal matrix A has a
unitary matrix P such that P-*AP is a
diagonal matrix.



