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Compactifications of the deformation spaces of projective structures

Abstract

Abstract: We present some compactification methods using the traces of the closed
curves on surfaces. The basic methods are Daniele Alessandrini’s work and the trace
computations on the deformation spaces. We present some experimental evidences.
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Compactifications of the deformation spaces of projective structures

Definitions and Notations

Orbifolds and real projective structures

Orbifolds

I By an n-dimensional orbifold, we mean a Hausdorff second countable topological
space with a fine open cover with local models by finite group actions.

I A good orbifold M/Γ where Γ is a discrete group with a properly discontinuous
order. We will only study good orbifolds.

I We need only consider very good orbifolds of form S/G for a surface S and a
finite group G acting on it.
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Compactifications of the deformation spaces of projective structures

Definitions and Notations

Orbifolds and real projective structures

Real projective structures on orbifolds

I A real projective structure on M/Γ with simply connected M is given by

I an immersion D : M → RPn equivariant with respect to

I a homomorphism Γ → PGL(n + 1,R).

I Γ is said to be the fundamental group of M/Γ.

I A real projective structure on M/Γ is convex if D is an imbedding D(M) is a
convex domain in an affine subspace An ⊂ RPn.

I A properly convex domain is a convex domain that is a precompact domain in
some affine subspace. A convex domain is properly convex iff it does not contain
a complete real line.

I A real projective structure on M/Γ is properly convex if so is D(M).
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Compactifications of the deformation spaces of projective structures

Definitions and Notations

Orbifolds and real projective structures

Projective group action

I A positive hyperbolic element A of SL(3,R) is a matrix with positive eigenvalues
which are distinct.

I An, n = 1, 2, .. acts with an attractive fixed point and a repelling fixed point and a
saddle type fixed point. The three lines connecting any two are A-invariant.

I The conjugation invariants of a positive hyperbolic element A are eigenvalues
λ1, λ2, λ3 with

0 < λ1 < λ2 < λ3, λ1λ2λ3 = 1.
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Compactifications of the deformation spaces of projective structures

Definitions and Notations

Orbifolds and real projective structures

t=l + l^(-2)

t=1/l
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2

4

6

8

10
I The Goldman invariants of A are

given by λ, τ where
λ = λ1, τ = λ2 + λ3.

I The region D is given by

0 < λ ≤ 1, 2/
√
λ ≤ τ ≤ λ+ λ−2

I A is positive hyperbolic iff
(λ(A), τ(A)) ∈ Do .

I The arcs correspond to
quasi-hyperbolic automorphisms.

I The point (1, 2) to a parabolic one.
(See Goldman [JDG1990].)
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Compactifications of the deformation spaces of projective structures

Definitions and Notations

Orbifolds and real projective structures

Deformation spaces of nice convex real projective structures

I Given a closed or open orbifold S of finite type, a convex real projective structure
is given by a diffeomorphism f : S → Ω/Γ for a convex domain Ω in RPn and Γ a
subgroup of PGL(n + 1,R).

I The ends are required to be either be a cusp, has a ideal principal geodesic
boundary for hyperbolic case, and ideal geodesic boundary for quasi-hyperbolic
case. These are nice structures.

I CDef(S) = {f : S → Ω/Γ}/ ∼ where f ∼ g for f : S → Ω/Γ and g : S → Ω′/Γ′ if
there exists a projective diffeomorphism k

S f−→ Ω/Γ

g
↘ ↓ k

Ω′/Γ′ (1)

so that k ◦ f is isotopic to g.
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Compactifications of the deformation spaces of projective structures

Definitions and Notations

Orbifolds and real projective structures

The hol map

I Assume that S is an open 2-orbifold of negative Euler characteristic.

I There is a local homeomorphism

hol : CDef(S)→ Hom(π1(S),PGL(n + 1,R))/ ∼

given by sending [(D, h)]→ [h].

I Let H1 be defined by (λ(h(gi )), τ(h(gi ))) ∈ D(gi ) for gi representing ideal
boundary components of S.

hol : CDef(S)→ H1/SL(3,R)

is a homeomorphism to a union of components of H1. (Alessandrini-Choi,
Marquis)
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Compactifications of the deformation spaces of projective structures

CDef(S)

Computing CDef(Pair of pants)
I Let P be a pair of pants with A,B,C the generator of π1(P) satisfying CBA = I.

I Then CDef(P) is parameterized by

(s, t , λ(A), τ(A), λ(B), τ(B), λ(C), τ(C))

where s, t ∈ R2
+ and the rest are in D1 × D2 × D3 for

D1 = D(A),D2 = D(B),D3 = D(C) above.
I CDef(P) = R2

+ × D1 × D2 × D3. (following L. Marquis.)

2
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[0,1,0]

[1,0,0]

T

T
T

w

w

w

[a  ,−1, c  ]

3
[a  ,b  ,−1]

3

1
[−1, b  , c  ]
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2

3

3

2 2
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Compactifications of the deformation spaces of projective structures

CDef(S)

The matrices

First, the matrices must assume these forms:

A :=

α1 α1a2 + γ1c2a3 γ1a3
0 −β1 + γ1b3c2 γ1b3
0 −γ1c2 −γ1


B :=

 −α2 0 −α2a3
−α2b1 β2 β2b3 + α2a3b1
α2c1 0 −γ2 + α2a3c1


C :=

−α3 + β3a2b1 β3a2 0
−β3b1 −β3 0

γ3c1 + β3b1c2 β3c2 γ3


(2)

The problem is to solve for the unknowns given the boundary invariants fixed. (See
Goldman [JDG1990].)
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Compactifications of the deformation spaces of projective structures

CDef(S)

Given a closed curve γ on Σ, we obtain a function

tr(γ) : Def (Σ)→ R+

given by sending an equivalence class of projective structure µ to the trace of the
conjugacy classes of holonomy of γ corresponding to µ. We can also define this for P
replacing Σ.

Theorem

The trace functions have only positive values.

By Positivstellensatz, we can show that trace functions are positive sums of monomials
in defining functions of D(Σ) multiplied by squares of rational functions.
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Proposition

Let α be a closed curve.
I The function tr(α) : Def (Sp,q,r )→ R+ is a rational function of s, t .

I The function tr(α) : Def (P)→ R+ is a rational function of s, t , lj , lj,2, j = 1, 2, 3.

I The function tr(α) : Def (Σ)→ R+ is a rational function of si , ti , lj , lj,2,
i = 1, 2, . . . , 2g − 2, j = 1, 2, . . . , 3g − 3 and with denominators

lj − lj,2, lj + lj,2, 1− lj l2j,2, 1 + lj l2j,2, 1− l2j lj,2, 1 + l2j lj,2, ll + lj l2j,2lk s

for cl , ck in a pair of pants containing cj and polynomials of gluing parameters
aj , bj (and one more longer denominator term with positive summands only).
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Fock-Goncharov and a pair of pants P.

Fock-Goncharov invariants

I Let P3
3 denote the set of a triangle A,B,C inscribed in a triangle with lines a, b, c

in RP2 mod out by PGL(3,R).

I P3
3 is actually R+ determined by the triple ratio

X =
fa(vB)fb(vC)fc(vA)

fa(vC)fb(vA)fc(vB)

where fl a defining function of a line l and vk a vector for a point k .

I

W

YD
B

A

C

d

c

a

b

C

B

A

a

b

c

X

Z
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Fock-Goncharov and a pair of pants P.

Fock-Goncharov coordinates

I A framed convex real projective structure is one where the ideal boundary
components are oriented geodesics. (not nec principal) Equivalently, these are
just structures with a flag at each ideal fixed point.

I Mark each face and mark two points in the interior of each edge.

I Theorem (Fock-Goncharov)

Let T +(S) denote the deformation space of framed convex real projective structures on
S. There is a homeomorphism φ : T +(S)→ Rm

+ where m is the number of markings.

I Proof.

Each marking gets an FG-invariant from a convex real projective structure. Conversely,
FG-invariants on markings lets us construct a convex real projective structure.
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I Proof.

Each marking gets an FG-invariant from a convex real projective structure. Conversely,
FG-invariants on markings lets us construct a convex real projective structure.
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Fock-Goncharov and a pair of pants P.

Computing holonomy from Fock-Goncharov coordinates
Given a closed curve γ on a framed convex real projective surface S, we can compute
the holonomy by following the rule of multiplications. A caveat: these are not
unimodular!

T (X) =

0 0 1
0 −1 −1
X 1 + X 1

 ,E(Z ,W ) =

 0 0 Z−1

0 −1 0
W 0 0

 , (3)

T(Y)

WZ

X

Y

E(Z, W)

T(X)

T(X)

T(X)

T(Y)

T(Y)
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Fock-Goncharov and a pair of pants P.

Computing holonomy from Fock-Goncharov coordinates

Theorem (Fock-Goncharov)

Let Def (P) be the Fock-Goncharov space parameterized by cubit-root Fock-Goncharov
coordinates. Let hµ : π1(S)→ SL(3,R) the holonomy homomorphism associated with
µ ∈ Def (P). The function tr(hµ(α)) : Def (P)→ R+ is a rational function of cubit-root
Fock-Goncharov coordinates which has only positive summands.

Proof.

Any curve can be freely homotoped to a product of E(Z ,W )T (X) or E(Z ,W )T (X)−1

for some X ,Z ,Ws.

E(Z ,W )T (X) =

Z−1X Z−1(1 + X) Z−1

0 1 1
0 0 W−1

 ,
E(Z ,W )T (X)−1 =

Z−1X 0 0
1 1 0
W W (1 + X−1) WX−1


(4)
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Fock-Goncharov and a pair of pants P.

Traces in terms of Goldman coordinates

Proposition (Positivity for a pair of pants)

tr(α) : Def (P)→ R+ is a rational function of li , li,2, s, t for i = 1, 2, 3 which has only
positive summands.

Proof.

Fock-Goncharov invariants of P can be computed from Goldman invariants li , li,2, s, t
as positive rational functions of li , li,2, s, t ,

1
l2l22,2l3 + l1s

,
1

l1l3l23,2 + l2s
,

1
l2 + l1l21,2l3s

with positive summands only.
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Compactifications of the deformation spaces of projective structures

Traces of the holonomy functions

Fock-Goncharov and a pair of pants P.

Positivity for orbifolds?

I Some experimental results show that for CDef(Sp,q,r ), the function tr(α) is a
rational function of li , τi , s, t for i = 1, 2, 3 that has only positive summands.

I However, we do not have any proof. This observation began our study. (See the
file "triangle5".)
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Compactifications of the deformation spaces of projective structures

Tropical compactification

Semifields

I A semifield is (S,+, ·, 0, 1) where + and · associative and commutative satisfying
the distributivity law, and 0, 1 ∈ S are identity elements, and

I S∗ = S− {0} is a group w.r.t ·. We write a/b for ab−1.
I 0 satisfies 0.x = x .0 = 0 for all x ∈ S.
I Furthermore, if x + y = 0, then x = y = 0. (the zero-sum-free property.)

I Given an ordered abelian group (Λ,+, <), add an extra element −∞ so that
−∞ < x , ∀x ∈ Λ.

I We define
TΛ = (Λ ∪ {−∞},⊕,�,−∞, 0)

where

a⊕ b = max{a, b}, a� b = a + b if a, b ∈ Λ or −∞ if a = −∞ or b = −∞.

The usual tropical field in the literature is TR.
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Compactifications of the deformation spaces of projective structures

Tropical compactification

Maslow dequantization

I Given t ∈ (0, 1), consider the map sending 0 to −∞

log 1
t

: R+ 3 z 7→ log 1
t
(z) =

(
−1
log t

)
log z ∈ R ∪ {−∞}.

I The inverse function sending −∞ to 0 is

Dt := log−1
1
t

: R ∪ {−∞} 3 x 7→ t−x = exp(x log 1
t
) ∈ R+.

I The operations +, · are transformed by conjugation to

x ⊕t y = log 1
t
(t−x + t−y ), x �t y = log 1

t
(t−x t−y ) = x + y .

I For every t ∈ (0, 1), t induces a semifield structure on R ∪ {−∞} isomorphic to
R+:

Rt = (R ∪ {−∞},⊕t ,�t ,−∞, 0).

The limit semifield is TR.
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Compactifications of the deformation spaces of projective structures

Tropical compactification

Compactification of semi-algebraic sets

I We define

Log 1
t

: Rn
+ → (R ∪ {−∞})n, (x1, . . . , xn) 7→ (log 1

t
(x1), · · · , log 1

t
(xn))

(Log 1
t
)−1 =: Dt : (R ∪ {−∞})n → Rn

+, (x1, . . . , xn) 7→ (t−x1 , · · · , t−xn ).

I Let V ⊂ (R>0)n be a closed real semi-algebraic set. For t ∈ (0, 1), the amoeba of
V is

At (V ) = {(log 1
t
(x1), . . . , log 1

t
(xn))|(x1, . . . , xn) ∈ V}.

I We deform
W := {(x , t) ∈ Rn × (0, ε)|x ∈ At (V )}.

I Define
A0 = π(W̄ ∩ (Rn × {0})) ⊂ Rn.

Theorem (Alessandrini)

Let V ⊂ (R>0)n be a semi-algebraic set. Then the logarithmic limit set A0(V ) ⊂ Rn is
a polyhedral cone, dimA0(V ) ≤ dim V, and A0(V ) ∩ Q is dense in A0(V ).
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Compactifications of the deformation spaces of projective structures

Tropical compactification

I We compactify Rn by adding the sphere at infinity

Rn 3 x 7→
x√

1 + ||x ||2
∈ Dn, (5)

Dn ∼= Rn ∪ Sn−1. (6)

I We are given an equivalence relation

x ∼ y iff x = λy for λ > 0.

I We define
∂V = (A0(V )− {O})/ ∼ ↪→ Sn−1.

I Given 0 < t0 < 1, the closure V̄ of At0 (V ) in Dn equals

V̄ = At0 (V ) ∪ ∂V .
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

I CDef(P) can be identified with a subset given by

DP := D1 ×D2 ×D3 × R2
+, where Di := 0 < li ≤ li2 ≤

1
li li,2

, for i = 1, 2, 3.

I Let F be the set of generating trace family of π1(S). A standard family due to
Lawton for a pair of pants P is given by

fa, fa−1 , fb, fb−1 , fab, fa−1b−1 , fab−1 , fa−1b, faba−1b−1 .

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

Figure: The Newton polytopes and their regions for fab−1 , fa−1b and faba−1b−1 . For each region,
the extremal vertices for the Newton polytope of fab−1 , the one for fa−1b and faba−1b−1 are linearly
independent.
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

Figure: The tropical image of the map (fab−1 , fa−1b, faba−1b−1 ) which is a union of three cones
with vertex the origin and the boundary arcs in the unit sphere.
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

Theorem

Let CDef(P)(l1,l1,2,l2,l2,2,l3,l3,2) be the subspace of CDef(P) where the boundary
invariants are fixed. Then its closure in the compactification of CDef(P) homeomorphic
to a disk.

Theorem

Given a small 2-orbifold S(p, q, r) with 1/p + 1/q + 1/r < 1, suppose that all trace
functions of CDef(S(p, q, r)) is a positive rational function in Goldman coordinates s, t .
Then the compactification of CDef(S(p, q, r)) is homeomorphic to the closed unit ball
B2.

This agrees with Cooper-Delp compactification as RP2 when we consider only the
length functions.
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

Some other results following the Bonahon-Dreyer approach
I Let P be a pair of pants with a triangulation into two triangles. We take one where

a boundary edge I of a triangle ends in only one end.
I Letting the center invariants to be constant, we can vary six variables of the

FG-coordinates.

I We fix all other invariants other than two ω and ζ on I.
I The tropical spectrum is

[0,−3(ω + ζ),−6(ω + ζ), . . . ] ∼ [0, 1, 2, . . . ]

I Hence, there is a collapsing of the FG-coordinates.

3
XY

Z

W

Figure: The diagram to compute the holonomy
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

Understandable regions

I First, we look at FG-matrices that are of form ET or ET−1. The tropicalization of
the matrix is: For i = 1, 2, 3, we have

Mζi ,ωi :=

 −2ζi − ωi + 2xi −2ζi − ωi + max{2xi ,−xi} −2ζi − ωi − xi
−∞ ζi − ωi − xi ζi − ωi − xi
−∞ −∞ ζi + 2ωi − xi

 ,

(7)

Nζi ,ωi :=

 −2ζi − ωi + xi −∞ −∞
ζi − ωi + xi ζi − ωi + xi −∞
ζi + 2ωi + xi ζi + 2ωi + max{xi ,−2xi} ζi + 2ωi − 2xi

 .

(8)
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

I We restrict to considering the cone C defined by the (1, 1)-entry of each matrix
being larger than or equal to other terms in the matrix:

xi > 0, ζi < 0, ωi < 0 (9)

is the cone we consider. For every i , we assume that this is true.

I The another region is C−
xi < 0, ωi > 0, ζi > 0 (10)

This region is symmetric to the first one (9).
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

I Let D be the deformation space. D ⊂ R−8χ(S). Let C denote the set of closed
curves. We define function F : D → RC given by (F (µ))α = fα(µ).

I Let Ceven be the set of unoriented simple closed curves and let Codd = C; the unit
vectors in the 1-homology group. (representable by connected circles.)

I We define F even : D → RCeven
and F odd : D → RCodd

.

I The main task is to show the injectivity of F : D → RC .

Proposition

The kernel of F even × F odd : D → RCeven × RC is same as the kernel of F .
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

Figure: The train tracks and weight, and FG-invariants
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Compactifications of the deformation spaces of projective structures

Tropical compactification

The pair of pants P case

Conjecture

I F : D → RC sends a cone C2E+F in D2E+F to a cone of dimension
E + F + dim H1(S̄, ∂S̄).

I It is never injective. The cone collapse by E − dim H1(S̄, ∂S̄).
I This gives us a set in the boundary of the compactification of dimension

E + F + dim H1(S̄, ∂S̄)− 1.
I Morover, the antipodal cone C− maps to the cone of the same dimension.

I This follows since F odd is homological. (following Bonahon-Dreyer.)
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