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A group action G x X — X with e(x) = x for all x and
gh(x) = g(h(x)). Thatis, G — Homeo(X) so that the
product operation becomes compositions.

We only need the result for finite group actions.

An equivariant map ¢ : X — Y between G-spaces is
a map so that ¢(g(x)) = g((x)).

An isotropy subgroup Gx = {g € G|g(x) = x}.

Gg(x) = 9Gxg~". Gx C Gy for an equivariant map

Tietze-Gleason Theorem: G a compact group acting
on X with a closed invariant set A. Let G also act
linearly on R". Then any equivariant ¢ : A — R”
extends to ¢ : X — R".
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» An orbit of x is G(x) = {g(x)|g € G}.
G/Gx — G(x) is one-to-one onto continuous Compact group
function.
An orbit type is given by the conjugacy class of Gy in
G. The orbit types form a partially ordered set.
Denote by X /G the space of orbits with quotient
topology.
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» An orbit of x is G(x) = {g(x)|g € G}.
» G/Gx — G(x) is one-to-one onto continuous Compact group
function.
» An orbit type is given by the conjugacy class of Gy in
G. The orbit types form a partially ordered set.
» Denote by X/G the space of orbits with quotient
topology.
» For AC X, G(A) = Uycq 9(A) is the saturation of A.
» Properties:

» 7: X — X/Gis an open, closed, and proper map.
» X /G is Hausdorff.

» X is compact iff X/G is compact.

» X is locally compact iff X/G is locally compact.
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» Let X = G x Y and G acts as a product. S. Choi
» For k, q relatively prime, the action of Zx on S2 in C?
generated by a matrix O ——
eZﬂ-i/k 0 actions
{ 0 27 qi/k ]

giving us a Lens space.
» We can also consider S'-actions given by

eZTrkiH 0
0 e27rq/'0

Then it has three orbit types.
» Consider in general the action of torus T"™-action on
C" given by

(C1yes Cn)(Y1s s ¥n) = (C1Y1, .o, ), lcil =1,y € C.

33/111



Orbit spaces: Examples Topoloy
» Then there is a homeomorphism h: C"/T" — (R*)" S. Choi
given by sending
Compact group

1o ¥n) = (01125 Lynl?). actons

The interiors of sides represent different orbit types.

34/111



Orbit spaces: Examples Topology o

orbifolds

» Then there is a homeomorphism h: C"/T" — (R*)" S. Choi
given by sending

Compact group

(Y1,-~-,Yn) — (\y1\2,...,|yn|2), actions

The interiors of sides represent different orbit types.

» H a closed subgroup of Lie group G. The left-coset
space G/H where G acts on the right also.

35/111



Ol’blt Spaces_ Examples Section 3:

Topology of
orbifolds

» Then there is a homeomorphism h: C"/T" — (R*)" S. Choi
given by sending
2 2 aotons. P
Y15 ¥n) = (I5A1%, s Ynl%).
The interiors of sides represent different orbit types.

» H a closed subgroup of Lie group G. The left-coset
space G/H where G acts on the right also.

» G/Gx — G(x) is given by gGx — g(x) is a
homeomorphism if G is compact.

36/111



Orbit spaces: Examples Topoloy
» Then there is a homeomorphism h: C"/T" — (R*)" S. Choi
given by sending
Compact group

(Y1,-~-,Yn) — (\y1\2,...,|yn|2), actions

The interiors of sides represent different orbit types.

» H a closed subgroup of Lie group G. The left-coset
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Orbit spaces: Examples Topoloy
» Then there is a homeomorphism h: C"/T" — (R*)" S. Choi
given by sending
Compact group

(Y1a-~a}/n) — (‘y1‘2,...,|yn|2), actions

The interiors of sides represent different orbit types.

» H a closed subgroup of Lie group G. The left-coset
space G/H where G acts on the right also.

» G/Gx — G(x) is given by gGx — g(x) is a
homeomorphism if G is compact.

» Twisted product: X aright G-space, Y a left G-space.
A left action is given by g(x,y) = (xg~ ', gy). The
twisted product X x g Y is the quotient space.

» p: X — Bis a principal bundle with G acting on the
left. F aright G-space. Then F xg X is the
associated bundle.
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for r = pq,p, q relatively prime, on an Euclidean
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» Proof:

» Find a simplicial action Z,; on S = S' « S' without
stationary points obtained by joining action of Z, on
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» The Conner-Floyd example: There is an action of Z;
for r = pq,p, q relatively prime, on an Euclidean Compact group
space of large dimensions without stationary points. setons
» Proof:
» Find a simplicial action Zpq on S® = S' « S' without
stationary points obtained by joining action of Z, on
S' and Z, on the second S'.
» Find an equivariant simplicial map h: S® — S® which
is homotopically trivial.
» Build the infinite mapping cylinder which is
contactible and imbed it in an Euclidean space of
high-dimensions where Z,, acts orthogonally.
» Find the contractible neighborhood. Taking the
product with the real line makes it into a Euclidean
space.
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» Hsiang-Hsiang: If G is any compact, connected,
nonabelian Lie group, then there is an action of G on
any euclidean space of sufficiently high dimension
for which the fixed point set F has any given
homotopy type. (F could be empty.)
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» H aclosed subgroup of G G xy Y is a left G-space
by the action g[g’, a] = [g9’, a]. This sends
equivalence classes to themselves.
» The inclusion A — G xy Ainduces a
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» G a compact subgroup, X right G-space and Y left
G-space. X xg Y is the quotient space of X x Y
where [xg, y] ~ [x,gy] for g € G. aotone. P

» H aclosed subgroup of G G xy Y is a left G-space
by the action g[g’, a] = [g9’, a]. This sends
equivalence classes to themselves.

» The inclusion A — G xy Ainduces a
homeomorphism A/H — (G xy A)/G.

» The isotropy subgroup at [e, a]:

[e,a] = gle,a] = [g,a] = [h~ ', h(a)]. Thus,
G[e,a] = Ha.

» Example: Let G = S’ and A be the unit-disk and
H = 73 generated by €>/3. Gand H acts in a
standard way in A. Then consider G x4 A.
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G xy A — X onto an open neighborhood of P where
Ais a some space where H acts on.
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» X a G-space. P an orbit of type G/H.
» A tube about P is a G-equivariant imbedding Compact group
G xy A — X onto an open neighborhood of P where ~ *°®
Ais a some space where H acts on.

» Every orbit passes the image of e x A.
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X a G-space. P an orbit of type G/H.

A tube about P is a G-equivariant imbedding Compact group
G xy A — X onto an open neighborhood of P where ~ *°®
Ais a some space where H acts on.

Every orbit passes the image of e x A.
In general Gx = Hy C Hfor x = [e, &].
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» X a G-space. P an orbit of type G/H.

A tube about P is a G-equivariant imbedding Compact group
G xy A — X onto an open neighborhood of P where ~ *°®
Ais a some space where H acts on.

Every orbit passes the image of e x A.
In general Gx = Hy C Hfor x = [e, &].
We have for above orbit P = G(x) for x = [e, a].
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» X a G-space. P an orbit of type G/H.

A tube about P is a G-equivariant imbedding Compact group
G xy A — X onto an open neighborhood of P where ~ *°®
Ais a some space where H acts on.

Every orbit passes the image of e x A.
In general Gx = Hy C Hfor x = [e, &].
We have for above orbit P = G(x) for x = [e, a].

Then Gx = H; C H as x = [e, a]. But Gy is conjugate
to H. Thus, H = H..
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» X a G-space. P an orbit of type G/H.

A tube about P is a G-equivariant imbedding Compact group
G xy A — X onto an open neighborhood of P where ~ *°®
Ais a some space where H acts on.

Every orbit passes the image of e x A.
In general Gx = Hy C Hfor x = [e, &].
We have for above orbit P = G(x) for x = [e, a].

Then Gx = H; C H as x = [e, a]. But Gy is conjugate
to H. Thus, H = H..

ais the stationary point of H in A.
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» X a G-space. P an orbit of type G/H.

v

A tube about P is a G-equivariant imbedding Compact group
G xy A — X onto an open neighborhood of P where ~ *°®
Ais a some space where H acts on.

» Every orbit passes the image of e x A.
» In general Gx = Hy C Hfor x = [e, &].
» We have for above orbit P = G(x) for x = [e, a.

» Then Gx = Hy C H as x = [e, a]. But Gx is conjugate
to H. Thus, H = H..

» ais the stationary point of H in A.

» Aslice: Let x € X, a set S such that
x € S,Gx(S)=S. Then Sisasliceif Gxg, S — X
so that [g, s] — g(s) is a tube about Gy.
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» Let x € Sand H = Gx. Then the following are actions
equivalent:
» Thereis atube ¢ : G xy A — X about G(x) such that
o([e;A]) = S.
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i Compact group
» Let x € Sand H = Gx. Then the following are actions
equivalent:
» Thereis atube ¢ : G xy A — X about G(x) such that
o([e,A]) = S.

» Sis aslice at x.
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Compact group

» Let x € Sand H = Gx. Then the following are actions
equivalent:
» Thereis atube ¢ : G xy A — X about G(x) such that
o([e,A]) = S.

» Sisaslice at x.

» G(S) is an open neighborhood of G(x) and there is
an equivariant retraction f : G(S) — G(x) with
f~'(x)=S8.
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i Compact group
» Let x € Sand H = Gx. Then the following are actions
equivalent:
» Thereis atube ¢ : G xy A — X about G(x) such that
o([e,A]) = S.

» Sis aslice at x.

» G(S) is an open neighborhood of G(x) and there is
an equivariant retraction f : G(S) — G(x) with
f~1(x)=S.

» It would be a good exercise to apply these theories to
above examples....
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» Let X be a completely regular G-space. There is a
tube about any orbit of a complete regular G-space Compact group
with G compact. (Mostow)
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» Let X be a completely regular G-space. There is a

tube about any orbit of a complete regular G-space Compact group
with G compact. (Mostow)
» Proof:
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The existence of tubes

» Let X be a completely regular G-space. There is a
tube about any orbit of a complete regular G-space

with G compact. (Mostow)

» Proof:
» Let xp have an isotropy group H in G.

Section 3:
Topology of
orbifolds

S. Choi

Compact group
actions
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S. Choi
» Let X be a completely regular G-space. There is a
tube about any orbit of a complete regular G-space Compact group
with G compact. (Mostow)
» Proof:

» Let xo have an isotropy group H in G.
» Find an orthogonal representation of G in R” with a

point vy whose isotropy group is H.
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The existence of tubes

» Let X be a completely regular G-space. There is a
tube about any orbit of a complete regular G-space
with G compact. (Mostow)

» Proof:
» Let xo have an isotropy group H in G.
» Find an orthogonal representation of G in R” with a
point vy whose isotropy group is H.
» There is an equivalence G(xp) and G(vp). Extend
this to a neighborhood.
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actions
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The existence of tubes

» Let X be a completely regular G-space. There is a
tube about any orbit of a complete regular G-space
with G compact. (Mostow)

» Proof:

» Let xo have an isotropy group H in G.

» Find an orthogonal representation of G in R” with a
point vy whose isotropy group is H.

» There is an equivalence G(xp) and G(vp). Extend
this to a neighborhood.

» For R”, we can find the equivariant retraction.
Transfer this on X.
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Section 3:

The existence of tubes Topology of

orbifolds
S. Choi

» Let X be a completely regular G-space. There is a
tube about any orbit of a complete regular G-space Compact group
with G compact. (Mostow)

» Proof:

» Let xo have an isotropy group H in G.

» Find an orthogonal representation of G in R” with a
point vy whose isotropy group is H.

» There is an equivalence G(xp) and G(vp). Extend
this to a neighborhood.

» For R”, we can find the equivariant retraction.
Transfer this on X.

» If Gis a finite group acting on a manifold, then a tube
is a union of disjoint open sets and a slice is an open
subset where Gy acts on.
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Path-lifting and covering homotopy theorem. Topology o

orbifolds

S. Choi

» Let X be a G-space, G a compact Lie group, and Compact group
f: 1 — X/G any path. Then there exists a lifting etons
f':1— Xsothatmof =f.
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Path-lifting and covering homotopy theorem. Topology o

orbifolds

S. Choi

» Let X be a G-space, G a compact Lie group, and Compact group
f: 1 — X/G any path. Then there exists a lifting s
f':1— Xsothatmof =f.
» Let f: X — Y be an equivariant map. Let
f': X/G — Y /G be an induced map. Let
F': X/G x | = Y /G be a homotopy preserving orbit
types that starts at f'. Then there is an equivariant
F : X x | — Y lifting F’ starting at f.
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Path-lifting and covering homotopy theorem. Topology of

orbifolds

S. Choi

» Let X be a G-space, G a compact Lie group, and Compact group
f: 1 — X/G any path. Then there exists a lifting e
f':1— Xsothatmof =f.

» Let f: X — Y be an equivariant map. Let
f': X/G — Y /G be an induced map. Let
F': X/G x | — Y /G be a homotopy preserving orbit
types that starts at f'. Then there is an equivariant
F : X x | — Y lifting F’ starting at f.

» If Gis finite and X a smooth manifold with a smooth
G-action and if the functions are smooth, then the
lifts can be chosen to be also smooth.
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Section 3:

Locally smooth actions Topology of

orbifolds

S. Choi

» M a G-space, G a compact Lie group, P an orbit of R
type G/H. V a vector space where H acts e
orthogonally. Then a linear tube in M is a tube of the
forme¢: GxyV — M.
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Section 3:

Locally smooth actions Topology of

orbifolds
S. Choi

» M a G-space, G a compact Lie group, P an orbit of Compact group
type G/H. V a vector space where H acts aetions
orthogonally. Then a linear tube in M is a tube of the
forme¢: GxyV — M.

» Example: A disk with S'-action fixing O. S xg1 R2.
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Locally smooth actions Topoloy

S. Choi

» M a G-space, G a compact Lie group, P an orbit of Compact group
type G/H. V a vector space where H acts e
orthogonally. Then a linear tube in M is a tube of the
formo¢: GxyV — M.

» Example: A disk with S'-action fixing O. S xg1 R2.

» Let Sbe aslice. Sis a linear sliceif G xg, S - M
given by [g, s] — g(s) is equivalent to a linear slice.
(If Gx-space S is equivalent to the orthogonal
Gx-space.)
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Locally smooth actions Topolegy o

orbifolds

S. Choi

» M a G-space, G a compact Lie group, P an orbit of Compact group
type G/H. V a vector space where H acts actions
orthogonally. Then a linear tube in M is a tube of the
form¢: GxyV — M.

» Example: A disk with S'-action fixing O. S xg1 R2.

» Let Sbe aslice. Sis a linear sliceif G xg, S - M
given by [g, s] — g(s) is equivalent to a linear slice.

(If Gx-space S is equivalent to the orthogonal
Gx-space.)

» If there is a linear tube about each orbit, then M is

said to be locally smooth.
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Locally smooth actions Tiigﬁ;’%%f

S. Choi

Compact group

» There exists a maximum orbit type G/H for G. (That i
is, H is conjugate to a subgroup of each isotropy
group.)
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Loca”y Smooth aCt|OnS Section 3:

Topology of
orbifolds

S. Choi

» There exists a maximum orbit type G/H for G. (That Solnpact gfoup
is, H is conjugate to a subgroup of each isotropy
group.)

» Proof:
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Locally smooth actions

» There exists a maximum orbit type G/H for G. (That
is, H is conjugate to a subgroup of each isotropy
group.)

» Proof:

» Near each tube, we find the maximal orbit types has
to be dense and open.

Section 3:
Topology of
orbifolds

S. Choi

Compact group
actions
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Loca”y Smooth aCt|onS Section 3:

Topology of
orbifolds

S. Choi

» There exists a maximum orbit type G/H for G. (That Compast group
is, H is conjugate to a subgroup of each isotropy
group.)
» Proof:
» Near each tube, we find the maximal orbit types has
to be dense and open.

» The maximal orbits so obtained are called principal
orbits.
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Locally smooth actions Topoloy

S. Choi

» There exists a maximum orbit type G/H for G. (That Compast group
is, H is conjugate to a subgroup of each isotropy
group.)
» Proof:
» Near each tube, we find the maximal orbit types has
to be dense and open.

» The maximal orbits so obtained are called principal
orbits.

» If M is a smooth manifold and compact Lie G acts
smoothly, this is true.
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M an |f0|d T?ngtliggyséf
orbifolds

S. Choi

Compact group
actions

» M a smooth manifold, G a compact Lie group acting
smoothly on M.
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Section 3:

Man |f0|d Topology of

orbifolds
S. Choi

Compact group
» M a smooth manifold, G a compact Lie group acting
smoothly on M.
» If Gis finite, then this is equivalent to the fact that
each jg : M — M given by x — g(x) is a
diffeomorphism.
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M an |f0|d T(Sjiztliggyso:f
orbifolds

S. Choi

Compact group

» M a smooth manifold, G a compact Lie group acting

smoothly on M.
» If Gis finite, then this is equivalent to the fact that

each jg : M — M given by x — g(x) is a

diffeomorphism.
» Let nbe the dimension of M and d the dimension of

the maximal orbit.
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M an |f0|d T(Sjiztliggyso:f
orbifolds

S. Choi

Compact group

» M a smooth manifold, G a compact Lie group acting

smoothly on M.
» If Gis finite, then this is equivalent to the fact that

each jg : M — M given by x — g(x) is a

diffeomorphism.
» Let nbe the dimension of M and d the dimension of

the maximal orbit.

» M* = M/G is a manifold with boundary if n — d < 2.
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Manifold

» Proof:

» Let kK = n— d, the codimension of the principal orbits.

» Consider a linear tube G xx V. The orbit space
(G X K V)* >~ Y,

» Let S be the unit sphere in V. Then V* is a cone
over S*.

» dim M* =dim V* =dim S* + 1.

» If kK =0, then M* is discrete.

» If M is a sphere, then M* is one or two points.
(allowing disconnected M.)

» If k =1, then M* is locally a cone over one or two
points. Hence M* is a 1-manifold (with boundary).

» If k =2, then M* is locally a cone over an arc or a
circle. (as S* is a 1-manifold by the previous step.)

» Example: The standard S'-action on S2: the quotient
is a segment. Z, action on R2 generated by the
antipodal map: The result is not a manifold.
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orbifolds
» Proof: S. Choi
» Let k = n—d, the codimension of the principal orbits.

Compact group
actions
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M an |f0|d T?ngtlioogyso:f

orbifolds
» Proof: S. Choi
» Let k = n— d, the codimension of the principal orbits.
» Consider a linear tube G xx V. The orbit space Solnpact gfoup

(G XK V)* >~ \/*,
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Section 3:

M an |f0|d Topology of
orbifolds
» Proof: S. Ghol
» Let k = n— d, the codimension of the principal orbits.
» Consider a linear tube G xx V. The orbit space ClamyeE gy

(G X i V)* YV actions
» Let S be the unit sphere in V. Then V* is a cone
over S*.
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M an |f0|d Ti;t:)tlioogyso:f

orbifolds

» Proof: S. Ghol
» Let k = n— d, the codimension of the principal orbits.
» Consider a linear tube G xx V. The orbit space ClamyeE gy

(G XK V)* g V* actions
» Let S be the unit sphere in V. Then V* is a cone

over S*.
» dim M* =dim V* =dim S* + 1.
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M an |f0|d Ti;t:)tlioogyso:f

orbifolds
» Proof: S. Ghol
» Let k = n— d, the codimension of the principal orbits.
» Consider a linear tube G xx V. The orbit space ClamyeE gy

(G XK V)* g V* actions
» Let S be the unit sphere in V. Then V* is a cone

over S*.
» dim M* = dim V* = dim S* + 1.
» If kK =0, then M* is discrete.
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orbifolds
» Proof: S. Ghol
» Let k = n— d, the codimension of the principal orbits.
» Consider a linear tube G xx V. The orbit space ClamyeE gy

actions

(G X K V)* =~ Y,

» Let S be the unit sphere in V. Then V* is a cone
over S*.

» dim M* = dim V* = dim S* + 1.

» If kK =0, then M* is discrete.

» If M is a sphere, then M* is one or two points.
(allowing disconnected M.)
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M an |f0|d T(Sjiztliggyso:f

orbifolds
» Proof: S. Ghol
» Let k = n— d, the codimension of the principal orbits.
» Consider a linear tube G xx V. The orbit space ClamyeE gy

actions

(G X K V)* =~ Y,

» Let S be the unit sphere in V. Then V* is a cone
over S*,

» dim M* =dim V* = dim S* + 1.

» If kK =0, then M* is discrete.

» If M is a sphere, then M* is one or two points.
(allowing disconnected M.)

» If k =1, then M* is locally a cone over one or two
points. Hence M* is a 1-manifold (with boundary).
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M an |f0|d T(Sjiztliggyso:f
orbifolds

» Proof: S Gt

» Let k = n— d, the codimension of the principal orbits.

» Consider a linear tube G xx V. The orbit space Compast group
(G X K V)* =~ Y,

» Let S be the unit sphere in V. Then V* is a cone
over S*,

» dim M* = dim V* = dim S* + 1.

» If kK =0, then M* is discrete.

» If M is a sphere, then M* is one or two points.
(allowing disconnected M.)

» If k =1, then M* is locally a cone over one or two
points. Hence M* is a 1-manifold (with boundary).

» If Kk =2, then M* is locally a cone over an arc or a
circle. (as S* is a 1-manifold by the previous step.)
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M an |f0|d T(S)ér:)tliggyso:f
orbifolds

» Proof: S. Ghol

» Let k = n— d, the codimension of the principal orbits.

» Consider a linear tube G xx V. The orbit space Compast group
(G X K V)* =~ Y,

» Let S be the unit sphere in V. Then V* is a cone
over S*,

» dim M* = dim V* = dim S* + 1.

» If kK =0, then M* is discrete.

» If M is a sphere, then M* is one or two points.
(allowing disconnected M.)

» If k =1, then M* is locally a cone over one or two
points. Hence M* is a 1-manifold (with boundary).

» If Kk =2, then M* is locally a cone over an arc or a
circle. (as S* is a 1-manifold by the previous step.)

» Example: The standard S'-action on S2: the quotient
is a segment. Z, action on R3 generated by the
antipodal map: The result is not a manifold.
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Smooth actions S
orbifolds

» Recall smooth actions. S. Choi

Compact group
actions
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Smooth actions Sk

orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions
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Section 3:

Smooth actions Tonolegy ¢

orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions

» G(x) is a smooth manifold. G/Gx — G(x) is a
diffeomorphism.
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Section 3:

Smooth actions Tonolegy ¢

orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions

» G(x) is a smooth manifold. G/Gx — G(x) is a
diffeomorphism.

» Exponential map: For X € TpM, there is a unique
geodesic vx with tangent vector at p equal to X. The
exponential map exp : T,M — M is defined by
X = x(1).
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orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions

» G(x) is a smooth manifold. G/Gx — G(x) is a
diffeomorphism.

» Exponential map: For X € TpM, there is a unique
geodesic vx with tangent vector at p equal to X. The
exponential map exp : T,M — M is defined by
X = x(1).

» If Ais an invariant smooth submanifold, then A has
an open invariant tubular neighborhood.
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Smooth actions S

orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions

» G(x) is a smooth manifold. G/Gx — G(x) is a
diffeomorphism.

» Exponential map: For X € TpM, there is a unique
geodesic vx with tangent vector at p equal to X. The
exponential map exp : T,M — M is defined by
X = x(1).

» If Ais an invariant smooth submanifold, then A has
an open invariant tubular neighborhood.

» The smooth action of a compact Lie group is locally
smooth.
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Smooth actions S

orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions

» G(x) is a smooth manifold. G/Gx — G(x) is a
diffeomorphism.

» Exponential map: For X € TpM, there is a unique
geodesic vx with tangent vector at p equal to X. The
exponential map exp : T,M — M is defined by
X = x(1).

» If Ais an invariant smooth submanifold, then A has
an open invariant tubular neighborhood.

» The smooth action of a compact Lie group is locally
smooth.

» Proof:
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Smooth actions S

orbifolds

» Recall smooth actions. S. Choi
» G-compact Lie group acting smoothly on M. Then
there exists an invariant Riemannian metric on M. Compact group

actions

» G(x) is a smooth manifold. G/Gx — G(x) is a
diffeomorphism.

» Exponential map: For X € TpM, there is a unique
geodesic vx with tangent vector at p equal to X. The
exponential map exp : T,M — M is defined by
X = x(1).

» If Ais an invariant smooth submanifold, then A has
an open invariant tubular neighborhood.

» The smooth action of a compact Lie group is locally
smooth.

» Proof:

» Use the fact that orbits are smooth submanifolds and
the above items.
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Some facts needed later S

orbifolds

S. Choi

Compact group
actions

» The subspace My, of same orbit type G/H is a
smooth locally-closed submanifold of M. (Corollary
2.5 Ch VI and Theorem 3.3 Ch. IV Bredon)
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Some facts needed later Sk
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Compact group
actions

» The subspace My, of same orbit type G/H is a
smooth locally-closed submanifold of M. (Corollary
2.5 Ch VI and Theorem 3.3 Ch. IV Bredon)

» The closure Mk consists of orbits of type less than
or equal to type G/K. (Theorem 3.3 Ch. IV Bredon)
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Some facts needed later Sk

orbifolds

S. Choi

Compact group
actions

» The subspace My, of same orbit type G/H is a
smooth locally-closed submanifold of M. (Corollary
2.5 Ch VI and Theorem 3.3 Ch. IV Bredon)

» The closure Mk consists of orbits of type less than
or equal to type G/K. (Theorem 3.3 Ch. IV Bredon)

» A a closed invariant submanifold. Then any two open
(resp. closed) invariant tubular neighborhoods are
equivariantly isotopic. (Theorem 2.6 Ch VI Bredon)
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Section 3:

Newman,S theorem Topology of

orbifolds
S. Choi

Compact group
actions

» Let M be a connected topological n-manifold. Then
there is a finite open covering U of the one-point
compactification of M such that there is no effective
action of a compact Lie group with each orbit
contained in some member of U. (Proof: algebraic

topology)
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Section 3:

Newman,S theorem Topology of

orbifolds

S. Choi

Compact group
actions

» Let M be a connected topological n-manifold. Then
there is a finite open covering U of the one-point
compactification of M such that there is no effective
action of a compact Lie group with each orbit
contained in some member of U. (Proof: algebraic
topology)

» If G is a compact Lie group acting effectively on M,
then MC is nowhere dense.

109/111



Equivariant triangulations Tiég‘!;ﬁ?fgf

S. Choi

» Soren lliman proved: Compact group

actions
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Equivariant triangulations Tiigﬁ;’%%f

S. Choi
» Soren lliman proved: Compact group

» Let G be a finite group. Let M be a smooth aetions
G-manifold with or without boundary. Then we have:
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Equivariant triangulations Tiiéﬁ;’%%f

S. Choi

» Soren lliman proved: Compact group

» Let G be a finite group. Let M be a smooth actions
G-manifold with or without boundary. Then we have:

» There exists an equivariant simplicial complex K and
a smooth equivariant triangulation h: K — M.
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Section 3:
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orbifolds

S. Choi

» Soren lliman proved: Compact group

» Let G be a finite group. Let M be a smooth setons
G-manifold with or without boundary. Then we have:

» There exists an equivariant simplicial complex K and
a smooth equivariant triangulation h: K — M.

» Ifh: K— Mand hy : L — M are smooth
triangulations of M, there exist equivariant
subdivisions K’ and L’ of K and L, respectively, such
that K’ and L’ are G-isomorphic.
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Equivariant triangulations Toplogy of

orbifolds

S. Choi

» Soren lliman proved: Compact group
» Let G be a finite group. Let M be a smooth setons
G-manifold with or without boundary. Then we have:
» There exists an equivariant simplicial complex K and
a smooth equivariant triangulation h: K — M.
» Ifh: K— Mand hy : L — M are smooth
triangulations of M, there exist equivariant
subdivisions K’ and L’ of K and L, respectively, such
that K’ and L’ are G-isomorphic.

» This result was widely used once a proof by Yang
(1963) was given. But an error was discovered by
Siebenmann (1970) and proved in 1977.
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