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Topology of 2-orbifolds

» We now wish to concentrate on 2-orbifolds.
» Singularities
> We simply have to classify finite groups in O(2): Z, acting as a reflection group
or a rotation group of angle 7 /2, a cyclic groups C, of order > 3 and dihedral
groups D, of order > 4.
> According to this the singularities are of form:
> A silvered point

»> A cone-point of order > 2.
> A corner-reflector of order > 2.
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26/1

N
~



2-0I’b|f0|dS Sectionofl;if‘(rﬁgs\ogy of

S. Choi

Topology of 2-orbifolds

» On the boundary of a surface with a corner, one can take mutually disjoint
open arcs ending at corners. If two arcs meet at a corner-point, then the
corner-point is a distinguished one. If not, the corner-point is ordinary.
The choice of arcs will be called the boundary pattern.

» As noted above, given a surface with corner and a collection of discrete
points in its interior and the boundary pattern, it is possible to put an
orbifold structure on it so that the interior points become cone-points and
the distinguished corner-points the corner-reflectors and boundary points
in the arcs the silvered points of any given orders.
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The triangulations of 2-orbifolds and classification

» One can put a Riemannian metric on a 2-orbifold so that the boundary is a
union of geodesic arcs and each corner-reflector have angles =/ n for its
order n and the cone-points have angles 2w /n.
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» Proof: First construct such a metric on the boundary by putting such
metrics on the boundary by using a broken geodesic in the euclidean
plane and around the cone points and then using partition of unity.

» By removing open balls around cone-points and corner-reflectors, we
obtain a smooth surface with corners.

» Find a smooth triangulation of so that the interior of each side is either
completely inside the boundary with the corners removed.
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» One can put a Riemannian metric on a 2-orbifold so that the boundary is a
union of geodesic arcs and each corner-reflector have angles =/ n for its
order n and the cone-points have angles 2w /n.

» Proof: First construct such a metric on the boundary by putting such
metrics on the boundary by using a broken geodesic in the euclidean
plane and around the cone points and then using partition of unity.

» By removing open balls around cone-points and corner-reflectors, we
obtain a smooth surface with corners.

» Find a smooth triangulation of so that the interior of each side is either
completely inside the boundary with the corners removed.

» Extend the triangulations by cone-construction to the interiors of the
removed balls.
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» A 2-orbifold is classified by the underlying smooth topology of the surface
with corner and the number and orders of cone-points, corner-reflectors,
and the boundary pattern of silvered arcs.

» proof: basically, strata-preserving isotopies.

» In general, a smooth orbifold has a smooth topological stratification and a
triangulation so that each open cell is contained in a single strata.

» Smooth topological stratifications satisfying certain weak conditions have
triangulations.
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Smooth 2-orbifolds and

» Theorem: Any 2-orbifold is obtained from a smooth surface with corner by triangulations
silvering some arcs and putting cone-points and corner-reflectors.

» A 2-orbifold is classified by the underlying smooth topology of the surface
with corner and the number and orders of cone-points, corner-reflectors,
and the boundary pattern of silvered arcs.

» proof: basically, strata-preserving isotopies.

» In general, a smooth orbifold has a smooth topological stratification and a
triangulation so that each open cell is contained in a single strata.

» Smooth topological stratifications satisfying certain weak conditions have
triangulations.

» One should show that the stratification of orbifolds by orbit types satisfies
this condition.
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Existence of locally finite good covering

» Let X be an orbifold. Give it a Riemannian metric.

Section 3: Topology of
orbifolds

S. Choi

Topology of 2-orbifolds

Smooth 2-orbifolds and
triangulations.

40/177



Section 3: Topology of

Existence of locally finite good covering orbfolds

S. Choi

Smooth 2-orbifolds and
triangulations

» Let X be an orbifold. Give it a Riemannian metric.

» There exists a good covering: each open set is connected and charts
have cells as cover and the intersection of any finite collection again has
such properties.

41/177



Existence of locally finite good covering Seter e

S. Choi

Smooth 2-orbifolds and
triangulations

» Let X be an orbifold. Give it a Riemannian metric.

» There exists a good covering: each open set is connected and charts
have cells as cover and the intersection of any finite collection again has
such properties.

» Each point has an open neighborhood with an orthogonal action.

42/177
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» Let X be an orbifold. Give it a Riemannian metric.

» There exists a good covering: each open set is connected and charts
have cells as cover and the intersection of any finite collection again has
such properties.

» Each point has an open neighborhood with an orthogonal action.

» Now choose sufficiently small ball centered at the origin so that it has a
convexity property. (That is, any path can be homotoped into a geodesic.)
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Existence of locally finite good covering

» Let X be an orbifold. Give it a Riemannian metric.

» There exists a good covering: each open set is connected and charts
have cells as cover and the intersection of any finite collection again has
such properties.

» Each point has an open neighborhood with an orthogonal action.

» Now choose sufficiently small ball centered at the origin so that it has a
convexity property. (That is, any path can be homotoped into a geodesic.)

» Find a locally finite subcollection.
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Existence of locally finite good covering

» Let X be an orbifold. Give it a Riemannian metric.

» There exists a good covering: each open set is connected and charts
have cells as cover and the intersection of any finite collection again has
such properties.

» Each point has an open neighborhood with an orthogonal action.

» Now choose sufficiently small ball centered at the origin so that it has a
convexity property. (That is, any path can be homotoped into a geodesic.)

» Find a locally finite subcollection.

» Then intersection of any finite collection is still convex and hence has cells
as cover.

Section 3: Topology of
orbifolds

S. Choi
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Covering spaces of orbifold

» Let X’ be an orbifold with a smooth map p : X’ — X so that for each point
x of X, there is a connected model (U, G, ¢) and the inverse image of
p(¥(U)) is a union of open sets with models isomorphic to (U, G, )
where 7 : U — U/G' is a quotient map and G’ is a subgroup of G. Then
p: X' — Xis a covering and X’ is a covering orbifold of X.
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p(¥(U)) is a union of open sets with models isomorphic to (U, G, )
where 7 : U — U/G' is a quotient map and G’ is a subgroup of G. Then
p: X' — Xis a covering and X’ is a covering orbifold of X.

> Abstract definition: If X" is a (Xy, Xp)-space and pg : Xj — Xp is a
covering map, then X’ is a covering orbifold.
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Covering spaces of orbifold

» Let X’ be an orbifold with a smooth map p : X’ — X so that for each point
x of X, there is a connected model (U, G, ¢) and the inverse image of
p(¥(U)) is a union of open sets with models isomorphic to (U, G, )
where 7 : U — U/G' is a quotient map and G’ is a subgroup of G. Then
p: X' — Xis a covering and X’ is a covering orbifold of X.

> Abstract definition: If X" is a (Xy, Xp)-space and pg : Xj — Xp is a
covering map, then X’ is a covering orbifold.

» We can see it as an orbifold bundle over X with discrete fibers. We can
choose the fibers to be acted upon by a discrete group G, and hence a
principal G-bundle. This gives us a regular (Galois) covering.
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Examples (Thurston)

» Y a manifold. ¥ a regular covering map p with the automorphism group I".
Let I';,i € I be a sequence of subgroups of I'.
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» Y a manifold. ¥ a regular covering map p with the automorphism group I".

Let I';,i € I be a sequence of subgroups of I'.
> The projection p; : ¥ x I\l — ¥ induces a covering
pi: (Y xT\IN/T — Y/T =Y where T acts by

(%, Tiryi) = (v(X), Tiviny ™)
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» Y a manifold. ¥ a regular covering map p with the automorphism group I".

Let I';,i € I be a sequence of subgroups of I'.
> The projection p; : ¥ x I\l — ¥ induces a covering
pi: (Y xT\IN/T — Y/T =Y where T acts by
(&, Ti) = (v(%), Ty ™)

> This is same as \?/F, — Y since I' acts transitively on both spaces.
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Examples (Thurston) S e

S. Choi

» Y a manifold. ¥ a regular covering map p with the automorphism group I".
Let I';, i € I be a sequence of subgroups of I'.
> The projection p; : ¥ x I\l — ¥ induces a covering
pi: (Y x TA\M)/T — V/I = Y where I acts by

Covering spaces of
orbifolds

A%, Tivi) = (v(%), Ty ™)
> This is same as \?/F, — Y since I' acts transitively on both spaces.
> Fiber-products Y x [],c, I\l — Y. Define left-action of I" by
A&, (Tdier) = (%), (Tivy ™)),y €T
We obtain the fiber-product

(Y xJ[ra\n/r—v/r=y.
iel
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Developable orbifold

» We can let I' be a discrete group acting on a manifold ¥ properly
discontinuously but maybe not freely.
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» We can let I' be a discrete group acting on a manifold ¥ properly
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> ;= {v € M~y(X) = X} is finite and if v(X;) N X; # 0, then v isin T;.
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Developable orbifold

» We can let I' be a discrete group acting on a manifold ¥ properly
discontinuously but maybe not freely.
» One can find a collection X; of coverings so that
> ;= {y € M~y(X) = X} is finite and if v(X;) N X; # 0, then v isin T;.
> The images of X; cover Y/T.
» Y = ¥/I has an orbifold quotient of ¥ and Y is said to be developable.

> In the above example, we can let I' be a discrete group acting on a
manifold Y properly discontinuously but maybe not freely. Y''is then the
fiber product of orbifold maps Y/I'; — Y.

Section 3: Topology of
orbifolds

S. Choi

Covering spaces of
orbifolds

58/177



Section 3: Topology of

Doubling an orbifold with mirror points orbfolds

S. Choi

of 2-orbifolds

> A mirror pointis a singular point with the stablizer group Z, acting as a Govering spaces of
reflection group. orbifolds

59/177



Doubling an orbifold with mirror points

» A mirror point is a singular point with the stablizer group Z acting as a
reflection group.

» One can double an orbifold M with mirror points so that mirror-points
disappear. (The double covering orbifold is orientable.)
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Doubling an orbifold with mirror points

» A mirror point is a singular point with the stablizer group Z acting as a
reflection group.
» One can double an orbifold M with mirror points so that mirror-points
disappear. (The double covering orbifold is orientable.)
> Let V; be the neighborhoods of M with charts (U;, G;, ¢i).
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Doubling an orbifold with mirror points Seter e

S. Choi

> A mirror point is a singular point with the stablizer group Z, acting as a Covering spaces of
reflection group. orbifolds
» One can double an orbifold M with mirror points so that mirror-points
disappear. (The double covering orbifold is orientable.)
> Let V; be the neighborhoods of M with charts (U;, G;, ¢i).
> Define new charts (U; x {—1,1}, G;, ¢;') where G; acts by
(g9(x, 1) = (9(x), s(g)!) where s(g) is 1 if g is orientation-preserving and —1 if
not and ¢;" is the quotient map.
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Doubling an orbifold with mirror points

» A mirror point is a singular point with the stablizer group Z acting as a
reflection group.

» One can double an orbifold M with mirror points so that mirror-points
disappear. (The double covering orbifold is orientable.)

> Let V; be the neighborhoods of M with charts (U;, G;, ¢i).

> Define new charts (U; x {—1,1}, G;, ¢;') where G; acts by
(g9(x, 1) = (9(x), s(g)!) where s(g) is 1 if g is orientation-preserving and —1 if
not and ¢;" is the quotient map.

> For each embedding, i : (W, H,v¢) — (U;, G;, ¢;) we define a lift
(W x {—1,1},H,¥") — (U x {—1,1}, G;, ¢; . This defines the gluing.

Section 3: Topology of
orbifolds

S. Choi

Covering spaces of
orbifolds



Doubling an orbifold with mirror points

» A mirror point is a singular point with the stablizer group Z acting as a
reflection group.

» One can double an orbifold M with mirror points so that mirror-points
disappear. (The double covering orbifold is orientable.)

> Let V; be the neighborhoods of M with charts (U;, G;, ¢i).

> Define new charts (U; x {—1,1}, G;, ¢;') where G; acts by
(g9(x, 1) = (9(x), s(g)!) where s(g) is 1 if g is orientation-preserving and —1 if
not and ¢;" is the quotient map.

> For each embedding, i : (W, H,v¢) — (U;, G;, ¢;) we define a lift
(W x {—1,1},H,¥") — (U x {—1,1}, G;, ¢; . This defines the gluing.

> The result is the doubled orbifold and the local group actions are orientation
preserving.

Section 3: Topology of
orbifolds

S. Choi

Covering spaces of
orbifolds
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Doubling an orbifold with mirror points

» A mirror point is a singular point with the stablizer group Z acting as a
reflection group.

» One can double an orbifold M with mirror points so that mirror-points
disappear. (The double covering orbifold is orientable.)

>
>

Let V; be the neighborhoods of M with charts (U;, Gi, ¢i).

Define new charts (U; x {—1,1}, Gj, ¢;') where G; acts by

(g9(x, 1) = (9(x), s(g)!) where s(g) is 1 if g is orientation-preserving and —1 if
not and ¢;" is the quotient map.

For each embedding, i : (W, H,v¢) — (U;, G;, ¢;) we define a lift

(W x {—1,1},H,¥") — (U x {—1,1}, G;, ¢; . This defines the gluing.
The result is the doubled orbifold and the local group actions are orientation
preserving.

The double covers the original orbifold with Galois group Zs.

Section 3: Topology of
orbifolds
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Doubling an orbifold with mirror points

> In the abstract definition, we simply let Xj be the orientation double cover
of Xy where G-acts on X’ preserving the orientation.
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Doubling an orbifold with mirror points

> In the abstract definition, we simply let Xj be the orientation double cover
of Xy where G-acts on X’ preserving the orientation.

» For example, if we double a corner-reflector, it becomes a cone-point.

Section 3: Topology of
orbifolds

S. Choi

Covering spaces of
orbifolds
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» Clearly, manifolds are orbifolds. Manifold coverings provide examples. ETiEEs
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Some Examples Section 3: Topology of

orbifolds
S. Choi

Covering spaces of
» Clearly, manifolds are orbifolds. Manifold coverings provide examples. DB
> Let Y be a tear-drop orbifold with a cone-point of order n. Then this
cannot be covered by any other type of an orbifold and hence is a
universal cover of itself.



Some Examples

» Clearly, manifolds are orbifolds. Manifold coverings provide examples.

> Let Y be a tear-drop orbifold with a cone-point of order n. Then this
cannot be covered by any other type of an orbifold and hence is a
universal cover of itself.

» A sphere Y with two cone-points of order p and g which are relatively
prime.

Section 3: Topology of
orbifolds

S. Choi

Covering spaces of
orbifolds
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Some Examples

» Clearly, manifolds are orbifolds. Manifold coverings provide examples.

> Let Y be a tear-drop orbifold with a cone-point of order n. Then this
cannot be covered by any other type of an orbifold and hence is a
universal cover of itself.

» A sphere Y with two cone-points of order p and g which are relatively
prime.

» Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zn,
is an orbifold with two cone-points of order pm and gm.

Section 3: Topology of
orbifolds

S. Choi

Covering spaces of
orbifolds
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Introduction

Topology of 2-orbifolds
Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations
Covering spaces of orbifolds
Fiber-product approach

Path-approach to the universal covering spaces
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Universal covering by fiber-product

» A universal cover of an orbifold Y is an orbifold ¥ covering any covering
orbifold of Y.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Universal covering by fiber-product

» A universal cover of an orbifold Y is an orbifold ¥ covering any covering
orbifold of Y.

» We will now show that the universal covering orbifold exists by using
fiber-product constructions. For this we need to discuss elementary
neighborhoods. An elementary neighborhood is an open subset with a

chart components of whose inverse image are open subsets with charts.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Universal covering by fiber-product

» A universal cover of an orbifold Y is an orbifold ¥ covering any covering
orbifold of Y.

» We will now show that the universal covering orbifold exists by using
fiber-product constructions. For this we need to discuss elementary
neighborhoods. An elementary neighborhood is an open subset with a

chart components of whose inverse image are open subsets with charts.

» We can take the model open set in the chart to be simply connected.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Universal covering by fiber-product

» A universal cover of an orbifold Y is an orbifold ¥ covering any covering
orbifold of Y.

» We will now show that the universal covering orbifold exists by using
fiber-product constructions. For this we need to discuss elementary
neighborhoods. An elementary neighborhood is an open subset with a

chart components of whose inverse image are open subsets with charts.

» We can take the model open set in the chart to be simply connected.
» Then such an open set is elementary.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Fiber-product for D"/ G;

» If Vis an orbifold D"/ G for a finite group G.
> Any covering is D"/ G; for a subgroup Gj of G.
> Given two covering orbifolds D" /Gy and V//Gs, a covering morphism is
induced by g € Gsothat gGig~"' C G.
> The covering morphism is in one-to-one correspondence with the double
cosets of form GogG for g such that gG;g~ ' C Go.
> The covering automorphism group of D" /G’ is given by N(G;)/G;.
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Fiber-product for D"/ G;

» If V is an orbifold D" /G for a finite group G.
> Any covering is D"/ Gy for a subgroup G of G.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Fiber-product for D"/ G; Seter e

S. Choi

» If V is an orbifold D" /G for a finite group G. AT

> Any covering is D"/ Gy for a subgroup G of G.
> Given two covering orbifolds D" /G; and V/Gj, a covering morphism is
induced by g € Gsothat gGig~"' C Go.
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Fiber-product for D"/ G; S oes

S. Choi

» If Vis an orbifold D"/ G for a finite group G. AECRE ]
> Any covering is D"/ Gy for a subgroup G of G.
> Given two covering orbifolds D" /G; and V/Gj, a covering morphism is

induced by g € Gsothat gGig~"' C Go.
> The covering morphism is in one-to-one correspondence with the double

cosets of form GogG; for g such that gG;g~ "' C Go.
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Fiber-product for D"/ G; S oes

S. Choi

» If V is an orbifold D" /G for a finite group G. R b

>
>

Any covering is D"/ G; for a subgroup G; of G.

Given two covering orbifolds D”/G; and V /G, a covering morphism is
induced by g € Gsothat gGig~"' C Go.

The covering morphism is in one-to-one correspondence with the double
cosets of form GogG; for g such that gG;g~' C Go.

The covering automorphism group of D" /G’ is given by N(G1)/G;.



Fiber-product for D"/ G;

» Given coverings p; : V/G; — V/G for G; C G for V homeomorphic to a
cell, we form a fiber-product.

Vi=(vx][G\G)/G— V/G
iel

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Fiber-product for D"/ G;

» Given coverings p; : V/G; — V/G for G; C G for V homeomorphic to a
cell, we form a fiber-product.

Vi=(vx][G\G)/G— V/G
iel

» |f we choose all subgroups G; of G, then any covering of V/G is covered
by V! induced by projection to G;-factor (universal property)

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



The construction of the fiber-product of a sequence of
orbifolds

» Let Y}, i € I be a collection of the orbifold-coverings of Y.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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universal covering spaces
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84/177



The construction of the fiber-product of a sequence of
orbifolds

> Let Y}, i € I be a collection of the orbifold-coverings of Y.

» We cover Y by elementary neighborhoods V; for j € J forming a good
cover.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of
orbifolds

> Let Y}, i € I be a collection of the orbifold-coverings of Y.

» We cover Y by elementary neighborhoods V; for j € J forming a good
cover.

» We take inverse images p,.‘1 (V}) which is a disjoint union of V /G for
some finite group Gi.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of
orbifolds

> Let Y}, i € I be a collection of the orbifold-coverings of Y.

» We cover Y by elementary neighborhoods V; for j € J forming a good
cover.

» We take inverse images p,‘1 (V}) which is a disjoint union of V /G for
some finite group Gi.

» Fix j and we form one fiber product by V /G by taking one from p,.‘1 (V)
for each i.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of
orbifolds

> Let Y}, i € I be a collection of the orbifold-coverings of Y.

» We cover Y by elementary neighborhoods V; for j € J forming a good
cover.

» We take inverse images p,‘1 (V}) which is a disjoint union of V /G for
some finite group Gi.

» Fix j and we form one fiber product by V /G by taking one from p,.‘1 (V)
for each i.

» Fix j and we form a fiber-product of p,.’1 (V}), which will essentially be the

disjoint union of the above fiber products indiced by the product of the
component indices for each i.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



The construction of the fiber-product of a sequence of
orbifolds

> Let Y}, i € I be a collection of the orbifold-coverings of Y.

» We cover Y by elementary neighborhoods V; for j € J forming a good
cover.

» We take inverse images p,‘1 (V}) which is a disjoint union of V /G for
some finite group Gi.

» Fix j and we form one fiber product by V /G by taking one from p,.‘1 (V)
for each i.

» Fix j and we form a fiber-product of p,.’1 (V}), which will essentially be the
disjoint union of the above fiber products indiced by the product of the
component indices for each i.

» Over regular points of V;, this is the ordinary fiber-product.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of
orbifolds

> Now, we wish to patch these up using imbeddings. Let U — V; N V. We
can assume U = V; N Vj which has a convex cell as a cover.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of
orbifolds

> Now, we wish to patch these up using imbeddings. Let U — V; N V. We
can assume U = V; N Vj which has a convex cell as a cover.

> We form the fiber products of p,’1 (U) as before which can be realized in V; and
Vi.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of
orbifolds

> Now, we wish to patch these up using imbeddings. Let U — V; N V. We
can assume U = V; N Vj which has a convex cell as a cover.

> We form the fiber products of p,’1 (U) as before which can be realized in V; and
Vi.

> Over the regular points in V; and V4, they are isomorphic. Then they are
isomorphic.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the fiber-product of a sequence of Secon S e 2 !
orbifolds S. Choi

Fiber-product approach

> Now, we wish to patch these up using imbeddings. Let U — V; N V. We
can assume U = V; N Vj which has a convex cell as a cover.

> We form the fiber products of p,’1 (U) as before which can be realized in V; and
Vi.

> Over the regular points in V; and V4, they are isomorphic. Then they are
isomorphic.

> Thus, each component of the fiber-product can be identified.
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The construction of the fiber-product of a sequence of Secon S e 2 !
orbifolds S. Choi

Fiber-product approach

> Now, we wish to patch these up using imbeddings. Let U — V; N V. We
can assume U = V; N Vj which has a convex cell as a cover.
> We form the fiber products of p,’1 (U) as before which can be realized in V; and
Vi.
> Over the regular points in V; and V4, they are isomorphic. Then they are
isomorphic.
> Thus, each component of the fiber-product can be identified.

» By patching, we obtain a covering Y* of Y with the covering map p’.
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Thurston’s example of fiber product

> Let / be the unit interval. Make two endpoints into silvered points.
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Thurston’s example of fiber product

> Let / be the unit interval. Make two endpoints into silvered points.

» Then /; = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Thurston’s example of fiber product

> Let / be the unit interval. Make two endpoints into silvered points.
» Then /; = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.

» |, = lis also covered by / by a map x — 2x for x € [0,1/2] and
x — 2 —2x for x € [1/2,1]. Let po denote this covering map.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



Thurston’s example of fiber product

v

v

\4

Let / be the unit interval. Make two endpoints into silvered points.

Then Iy = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.

I, = Iis also covered by / by a map x — 2x for x € [0,1/2] and
x — 2 —2x for x € [1/2,1]. Let po denote this covering map.

Then the fiber product of p; and p» is what?

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



Thurston’s example of fiber product

v

v

\4

v

Let / be the unit interval. Make two endpoints into silvered points.

Then Iy = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.

I, = Iis also covered by / by a map x — 2x for x € [0,1/2] and

x — 2 —2x for x € [1/2,1]. Let po denote this covering map.

Then the fiber product of p; and p» is what?

Cover I by Ay = [0,€),Ax = (/2,1 — €/2), A3 = (e, 1].

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Thurston’s example of fiber product

v

v

\4

v

Let / be the unit interval. Make two endpoints into silvered points.
Then Iy = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.
I, = Iis also covered by / by a map x — 2x for x € [0,1/2] and
x — 2 —2x for x € [1/2,1]. Let po denote this covering map.
Then the fiber product of p; and p» is what?
Cover I by Ay = [0,€),Ax = (/2,1 — €/2), A3 = (e, 1].
> Over Ay, |1 has an open interval and & has two half-open intervals. The
fiber-product is a union of two copies of open intervals.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Thurston’s example of fiber product

v

v

\4

v

Let / be the unit interval. Make two endpoints into silvered points.

Then Iy = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.
I, = Iis also covered by / by a map x — 2x for x € [0,1/2] and
x — 2 —2x for x € [1/2,1]. Let po denote this covering map.
Then the fiber product of p; and p» is what?
Cover I by Ay = [0,€),Ax = (/2,1 — €/2), A3 = (e, 1].
> Over Ay, |1 has an open interval and & has two half-open intervals. The

fiber-product is a union of two copies of open intervals.
> Over Ay, the fiber product is a union of four copies of open intervals.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



Thurston’s example of fiber product

v

v

\4

v

Let / be the unit interval. Make two endpoints into silvered points.

Then Iy = I is double covered by S with the deck transformation group
Z». Let p; denote the covering map.

I, = Iis also covered by / by a map x — 2x for x € [0,1/2] and
x — 2 —2x for x € [1/2,1]. Let po denote this covering map.
Then the fiber product of p; and p» is what?
Cover I by Ay = [0,€),Ax = (/2,1 — €/2), A3 = (e, 1].
> Over Ay, |1 has an open interval and & has two half-open intervals. The
fiber-product is a union of two copies of open intervals.

> Over Ay, the fiber product is a union of four copies of open intervals.
> Over Ags, the fiber product is a union of two copies of open intervals.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Section 3: Topology of
orbifolds

S. Choi

» By pasting considerations, we obtain a circle mapping 4-1 almost
everywhere to /.

Fiber-product approach
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Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach

» By pasting considerations, we obtain a circle mapping 4-1 almost
everywhere to /.
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The construction of the universal cover

» The collection of cover of an orbifold is countable upto isomorphisms
preserving base points. (Cover by a countable good cover and for each
elementary neighborhood, there is a countable choice.)

Section 3: Topology of
orbifolds
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Fiber-product approach
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The construction of the universal cover

» The collection of cover of an orbifold is countable upto isomorphisms
preserving base points. (Cover by a countable good cover and for each
elementary neighborhood, there is a countable choice.)

» Take a fiber product of Y;, i = 1,2, 3, .... The fiber-product ¥ with a base
point . We take a connected component.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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The construction of the universal cover

» The collection of cover of an orbifold is countable upto isomorphisms
preserving base points. (Cover by a countable good cover and for each
elementary neighborhood, there is a countable choice.)

» Take a fiber product of Y;, i = 1,2, 3, .... The fiber-product ¥ with a base
point . We take a connected component.

» The for any cover Y;, there is a morphism ¥ — ;.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach

107/177



The construction of the universal cover

» The collection of cover of an orbifold is countable upto isomorphisms
preserving base points. (Cover by a countable good cover and for each
elementary neighborhood, there is a countable choice.)

» Take a fiber product of Y;, i = 1,2, 3, .... The fiber-product ¥ with a base
point . We take a connected component.

» The for any cover Y;, there is a morphism ¥ — ;.

» The universal cover is unique up to covering orbifold-isomorphisms by the
universality property.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Properties of the universal cover

» The group of automorphisms of ¥ is called the fundamental group and is
denoted by 71 (Y).

Section 3: Topology of
orbifolds
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Fiber-product approach
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Properties of the universal cover

» The group of automorphisms of ¥ is called the fundamental group and is
denoted by 71 (Y).

» m1(Y) acts transitively on ¥ on fibers of p~'(x) for each x in Y. (To prove
this, we choose one covering of Y from a class of base-point preserving
isomorphism classes of coverings of Y. Then the universal cover with any
base-point occurs will occur in the list and hence a map from Y to it
preserving base-points.)

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Properties of the universal cover

» The group of automorphisms of ¥ is called the fundamental group and is
denoted by 71 (Y).

» m1(Y) acts transitively on ¥ on fibers of p~'(x) for each x in Y. (To prove
this, we choose one covering of Y from a class of base-point preserving
isomorphism classes of coverings of Y. Then the universal cover with any
base-point occurs will occur in the list and hence a map from Y to it
preserving base-points.)

» V/m(Y)=Y.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



Properties of the universal cover

» The group of automorphisms of ¥ is called the fundamental group and is
denoted by 71 (Y).

» m1(Y) acts transitively on ¥ on fibers of p~'(x) for each x in Y. (To prove
this, we choose one covering of Y from a class of base-point preserving
isomorphism classes of coverings of Y. Then the universal cover with any
base-point occurs will occur in the list and hence a map from Y to it
preserving base-points.)

» V/m(Y)=Y.
» Any covering of Y is of form ¥ /I for a subgroup I of 7y (Y).

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Properties of the universal cover

» The group of automorphisms of ¥ is called the fundamental group and is
denoted by 71 (Y).

» m1(Y) acts transitively on ¥ on fibers of p~'(x) for each x in Y. (To prove
this, we choose one covering of Y from a class of base-point preserving
isomorphism classes of coverings of Y. Then the universal cover with any
base-point occurs will occur in the list and hence a map from Y to it
preserving base-points.)

» V/m(Y)=Y.
» Any covering of Y is of form ¥ /I for a subgroup I of 7y (Y).

» The isomorphism classes of coverings of Y is the set of conjugacy
classes of subgroups of w1 (Y).

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



Properties of the universal cover

» The group of automorphism is N(I)/T.

» A covering is regular if and only if " is normal.

» A good orbifold is an orbifold with a cover that is a manifold.

» An very good orbifold is an orbifold with a finite cover that is a manifold.

» A good orbifold has a simply-connected manifold as a universal covering
space.
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Properties of the universal cover

» The group of automorphism is N(I")/T.
» A covering is regular if and only if ' is normal.
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orbifolds
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Properties of the universal cover

» The group of automorphism is N(I")/T.
» A covering is regular if and only if ' is normal.
» A good orbifold is an orbifold with a cover that is a manifold.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Properties of the universal cover

v

The group of automorphism is N(I")/T.

A covering is regular if and only if ' is normal.

A good orbifold is an orbifold with a cover that is a manifold.

An very good orbifold is an orbifold with a finite cover that is a manifold.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Properties of the universal cover

» The group of automorphism is N(I")/T.

» A covering is regular if and only if ' is normal.

» A good orbifold is an orbifold with a cover that is a manifold.

> An very good orbifold is an orbifold with a finite cover that is a manifold.

» A good orbifold has a simply-connected manifold as a universal covering
space.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Induced homomorphism of the fundamental group

» Given two orbifolds Y; and Y2 and an orbifold-diffeomorphism
g : Yy — Yo. Then the lift to the universal covers Y; and Y5 is also an
orbifold-diffeomorphism. Furthermore, once the lift value is determined at
a point, then the lift is unique.

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Induced homomorphism of the fundamental group

» Given two orbifolds Y; and Y2 and an orbifold-diffeomorphism
g : Yy — Yo. Then the lift to the universal covers Y; and Y5 is also an
orbifold-diffeomorphism. Furthermore, once the lift value is determined at
a point, then the lift is unique.

> Also, homotopies f : Y5 — Y> of orbifold-maps lift to homotopies in the
universal covering orbifolds f; : Yy — Ys. Proof: we consider regular parts
and model neighborhoods where the lift clearly exists uniquely.
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Fiber-product approach
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Induced homomorphism of the fundamental group

» Given two orbifolds Y; and Y2 and an orbifold-diffeomorphism
g : Yy — Yo. Then the lift to the universal covers Y; and Y5 is also an
orbifold-diffeomorphism. Furthermore, once the lift value is determined at
a point, then the lift is unique.

> Also, homotopies f : Y5 — Y> of orbifold-maps lift to homotopies in the
universal covering orbifolds f; : Yy — Ys. Proof: we consider regular parts
and model neighborhoods where the lift clearly exists uniquely.

» Given orbifold-diffeomorphism 7 : Y — Z which lift to a diffeomorphism
f:Y— Z weobtain f; : 71(Y) = m(2).

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach



Induced homomorphism of the fundamental group

» Given two orbifolds Y; and Y2 and an orbifold-diffeomorphism
g : Yy — Yo. Then the lift to the universal covers Y; and Y5 is also an
orbifold-diffeomorphism. Furthermore, once the lift value is determined at
a point, then the lift is unique.

> Also, homotopies f : Y5 — Y> of orbifold-maps lift to homotopies in the
universal covering orbifolds f; : Yy — Ys. Proof: we consider regular parts
and model neighborhoods where the lift clearly exists uniquely.

» Given orbifold-diffeomorphism 7 : Y — Z which lift to a diffeomorphism
f:Y— Z weobtain f; : 71(Y) = m(2).

» If g is homotopic to f, then g, = f..

Section 3: Topology of
orbifolds

S. Choi

Fiber-product approach
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Outline

Covering spaces of orbifolds

Path-approach to the universal covering spaces

Section 3: Topology of
orbifolds

S. Choi
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Path-approach to the universal covering spaces. Seter e

S. Choi
» G-paths. Given an etale group0|d X. A G-path ¢ = (go, €1, 91, -+, Ck» Gk) Path-approach to the
over a subdivision a=fp < t; < ... < tx = bofinterval [a, b] conS|sts of universal covering spaces
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Path-approach to the universal covering spaces. Seter e

S. Choi
» G-paths. Given an etale group0|d X. A G-path ¢ = (go, €1, 91, -+, Ck» Gk) Path-approach to the
over a subdivision a=fp < t; < ... < tx = bofinterval [a, b] conS|sts of universal covering spaces

> continuous maps ¢; : [ti—1, ti] — Xo
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Path-approach to the universal covering spaces.

» G-paths. Given an etale group0|d X. A G-path ¢ = (go, €1, 91, -+, Ck» Gk)
over a subdivision a=fp < t; < ... < tx = bofinterval [a, b] consists of
> continuous maps ¢; : [ti—1, ti] — Xo
> elements g; € X so that s(g;) = ¢iy1(4) fori=0,1,..,k — 1 and
t(g,-) = C,'(t,') fori=1,.., k.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Path-approach to the universal covering spaces.

» G-paths. Given an etale group0|d X. A G-path ¢ = (go, €1, 91, -+, Ck» Gk)
over a subdivision a=fp < t; < ... < tx = bofinterval [a, b] consists of
> continuous maps ¢; : [ti—1, ti] — Xo
> elements g; € X so that s(g;) = ¢iy1(4) fori=0,1,..,k — 1 and
t(g,-) = C,'(t,') fori=1,.., k.

» The initial point is t(gg) and the terminal point is s(gx)-

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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» The two operations define an equivalence relation:
> Subdivision. Add new division point ¢/ in [t;, ti1] and g/ = 14,7 and replacing
1

¢ with ¢, g/, ¢/’ where ¢/, ¢’ are restrictions to [t;, t/] and [t/ fi1.1].

> Replacement: replace ¢ with ¢’ = (g¢, ¢}, 91, .-, Cx, gx) as follows. For each
choose continuous map h; : [ti_1, tj] — Xi so that s(h;(t)) = ci(t) and define
c/(t) = t(hi(t)) and g/ = hi(t;)gih | () fori=1,.., k —1and
g% = gohy ' (to) and gy = hyc(tic)gk.
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Section 3: Topology of
orbifolds

S. Choi

» The two operations define an equivalence relation:
> Subdivision. Add new division point &/ in [t;, ti+1] and g/ = 1,y and replacing
X - A Path-approach to the
¢ with ¢, g/, ¢/’ where ¢/, ¢’ are restrictions to [f;, t/] and [t/, ;1] universal covering spaces

129/177



» The two operations define an equivalence relation:
> Subdivision. Add new division point #/ in [, ti.1] and g/ = 1,/ and replacing
1

¢ with ¢, g/, ¢/’ where ¢/, ¢’ are restrictions to [f;, t/] and [t/, fi1.1].

> Replacement: replace ¢ with ¢’ = (g4, ¢, g, --, Cr, Jj) as follows. For each i
choose continuous map h; : [ti_1, tj] — Xi so that s(h;(t)) = ci(t) and define
ci/(t) = t(hi(t))and g/ = h,-(t,v)g,-h,.;}(t,-) fori=1,..,k —1and
g% = gohy ' (to) and gy = hic(tc)gk.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Compositions of G-paths

» All paths are defined on [0, 1] from now on.

Section 3: Topology of
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Compositions of G-paths

> All paths are defined on [0, 1] from now on.

» Given two paths ¢ = (9o, Ci, -, Ck, gk)over0=fh < t; < ... < txy = 1 and
¢ = (g}, ¢, - Cps» js ) SUch that the terminal point of ¢ equals the initial
point of ¢, the composition ¢ x ¢’ is the G-path ¢’ = (gy, ¢{', .., g 4/) 80O

that
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orbifolds
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Path-approach to the
universal covering spaces
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Compositions of G-paths

> All paths are defined on [0, 1] from now on.

» Given two paths ¢ = (9o, Ci, -, Ck, gk)over0=fh < t; < ... < txy = 1 and
¢ = (g}, ¢, - Cps» js ) SUch that the terminal point of ¢ equals the initial
point of ¢, the composition ¢ x ¢’ is the G-path ¢’ = (gy, ¢{', .., g 4/) 80O
that

>t =t/2fori=0,..kandt’ =1/2+t_,/2and

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Compositions of G-paths

> All paths are defined on [0, 1] from now on.

» Given two paths ¢ = (9o, Ci, -, Ck, gk)over0=fh < t; < ... < txy = 1 and
¢ = (g}, ¢, - Cps» js ) SUch that the terminal point of ¢ equals the initial
point of ¢, the composition ¢ x ¢’ is the G-path ¢’ = (gy, ¢{', .., g 4/) 80O
that

>t =t/2fori=0,..kandt’ =1/2+t_,/2and
> c/(t)y=ci(2t)fori=1,..,kand c/'(t) = ¢/_,(2t — 1) for
i=k4+1,..., k+k.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Compositions of G-paths

> All paths are defined on [0, 1] from now on.

» Given two paths ¢ = (9o, Ci, -, Ck, gk)over0=fh < t; < ... < txy = 1 and
¢ = (g}, ¢, - Cps» js ) SUch that the terminal point of ¢ equals the initial
point of ¢, the composition ¢ x ¢’ is the G-path ¢’ = (gy, ¢{', .., g 4/) 80O
that

>t =t/2fori=0,..kandt’ =1/2+t_,/2and
> c/(t)y=ci(2t)fori=1,..,kand c/'(t) = ¢/_,(2t — 1) for
i=k4+1,..., k+k.

> g’ =gifori=1,..,k—1and g = gk9},9/’ = 9g/_,fori=k+1,..,k+k'.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Section 3: Topology of

Compositions of G-paths ortiflds

S. Choi

> All paths are defined on [0, 1] from now on.
» Given two paths ¢ = (9o, Ci, -, Ck, gk)over0=fh < t; < ... < txy = 1 and

¢ = (g(/), c{ s e c,’(,,g,’(,) such that the terminal point of ¢ equals the initial atr sopronch o110
point of ¢, the composition ¢ x ¢’ is the G-path ¢’ = (gy, ¢{', .., g 4/) 80O universal covering spaces

that
>t =t/2fori=0,..kandt’ =1/2+t_,/2and
> c/(t)y=ci(2t)fori=1,..,kand c/'(t) = ¢/_,(2t — 1) for
i=k+1, .., k+k.
> g’ =gifori=1,..,k—1and g = gk9},9/’ = 9g/_,fori=k+1,..,k+k'.
» Theinverse c—'is (ghs ¢}, s Ci» gi) over the subdivision where

t/ =1 tisothatg = g,_'; and c/(t) = cxk_is1(1 — 1).
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Homotopies of G-paths

» There are two types
> equivalences

> An elementary homotopy is a family of G-paths ¢® = (g5, ¢{, ..., g) over the

subdivision 0 = f§ < tf < ... < tf = 1 sothat tf, g7, ¢/ depends continously
ons.

> A homotopy class of c is denoted [c].

> [c = ¢’] is well-defined in the homotopy classes [c] and [¢’]. Hence, we define
[c] = [¢].

> [cx (¢ xc")]=[(cxc)xc"].

> The constant path e = (14, x, 1x). Then [c ¢~ '] = [ey] if the initial point of

cis xand [c™"  ¢] = [e,] if the terminal point of cis y. Thus, [c] ™' = [¢™'].
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Homotopies of G-paths

» There are two types
> equivalences
> An elementary homotopy is a family of G-paths ¢® = (g5, ¢f, ..., g) over the

subdivision 0 = f§ < tf < ... < tf = 1 sothat tf, g7, ¢/ depends continously
ons.

A homotopy class of c is denoted [c].
[c * ¢’] is well-defined in the homotopy classes [c] and [¢’]. Hence, we define

[e] * [c'].
> [cx (¢ xc")]=[(cxc)xc"].
The constant path ey = (1x, X, 1x). Then [c x ¢~ '] = [ey] if the initial point of
cis xand [c™' * c] = [e,] if the terminal point of cis y. Thus, [c] ™" = [¢™].
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Homotopies of G-paths Seter e

S. Choi
» There are two types
> equivalences
> An elementary homotopy is a family of G-paths ¢® = (g§, cf, ..., gg) over the Paliapproach to the
A s s s s s o4 . universal covering spaces
subdivision 0 = t; < tf < ... <ty = 1sothat t, g7, ¢/ depends continously
ons.
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Homotopies of G-paths

» There are two types
> equivalences
> An elementary homotopy is a family of G-paths ¢® = (g§, cf, ..., gg) over the
subdivision 0 = f§ < tf < ... < tf = 1 sothat tf, g7, ¢; depends continously
ons.
> A homotopy class of ¢ is denoted [c].

Section 3: Topology of
orbifolds
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Homotopies of G-paths SERIEN S ey &

orbifolds
S. Choi
» There are two types
> equivalences
> An elementary homotopy is a family of G-paths ¢® = (g§, cf, ..., gg) over the Paliapproach to the
A s s s s s o4 . universal covering spaces
subdivision 0 = t; < tf < ... <ty = 1sothat t, g7, ¢/ depends continously

ons.
> A homotopy class of ¢ is denoted [c].
> [c = ¢’] is well-defined in the homotopy classes [c] and [¢’]. Hence, we define

[e] + [¢"].
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Homotopies of G-paths SERIEN S ey &

orbifolds
S. Choi
» There are two types
> equivalences
> An elementary homotopy is a family of G-paths ¢® = (g§, cf, ..., gg) over the Paliapproach to the
A s s s s s o4 . universal covering spaces
subdivision 0 = t; < tf < ... <ty = 1sothat t, g7, ¢/ depends continously

ons.

> A homotopy class of ¢ is denoted [c].

> [c = ¢’] is well-defined in the homotopy classes [c] and [¢’]. Hence, we define
[c] = [¢].

> [cx (¢ xc”)] =[(cxc’)*C"].
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Homotopies of G-paths SERIEN S ey &

orbifolds
S. Choi
» There are two types
> equivalences
> An elementary homotopy is a family of G-paths ¢® = (g§, cf, ..., gg) over the Paliapproach to the
A s s s s s o4 . universal covering spaces
subdivision 0 = t; < tf < ... <ty = 1sothat t, g7, ¢/ depends continously

ons.

> A homotopy class of ¢ is denoted [c].

> [c = ¢’] is well-defined in the homotopy classes [c] and [¢’]. Hence, we define
[c] = [¢].

> [cx (¢ xc)]=[(cxc')xC"].

> The constant path e, = (14, x, 1). Then [c * ¢~ '] = [ey] if the initial point of
cis x and [c~' * c] = [e,] if the terminal point of cis y. Thus, [¢] ' = [¢].
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Fundamental group =1 (X, Xo)

» The fundamental group 71 (X, Xp) based at xy € Xj is the group of loops
based at xg.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Fundamental group =1 (X, Xo)

» The fundamental group 71 (X, Xp) based at xy € Xj is the group of loops
based at xg.

» A continuous homomorphism f : X — Y induces a homomorphism
fe 1 m(X, X0) = m1 (Y, f(X0))-

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Fundamental group =1 (X, Xo)

» The fundamental group 71 (X, Xp) based at xy € Xj is the group of loops
based at xg.

» A continuous homomorphism f : X — Y induces a homomorphism
fe 1 m(X, X0) = m1 (Y, f(X0))-
» This is well-defined up to conjuations.
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Fundamental group =1 (X, Xo)

» The fundamental group 71 (X, Xp) based at xy € Xj is the group of loops
based at xg.

» A continuous homomorphism f : X — Y induces a homomorphism
fi : g (X,Xo) — 7I'1(Y7 f(Xo))

» This is well-defined up to conjuations.

» An equivalence induces an isomorphism.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Fundamental group =1 (X, Xo)

» The fundamental group 71 (X, Xp) based at xy € Xj is the group of loops
based at xg.

» A continuous homomorphism f : X — Y induces a homomorphism
fe 1 m(X, X0) = m1 (Y, f(X0))-

» This is well-defined up to conjuations.
» An equivalence induces an isomorphism.

» Seifert-Van Kampen theorem: X an orifold. X, = UU V where U and V
are open and U N V = W. Assume that the groupoid restrictions Gy, Gy,
Gy to U, V, W are connected. And let xo, € W. Then 7 (X, xo) is the
quotient group of the free product 71 (Gy, Xo) * 71 (Gv, Xo) by the normal
subgroup generated by jy(7)jw (v~ ") for v € 71 (Gw, Xo) for jy the
induced homomorphism 71 (Gw, Xo) — m1(Guy, Xo) and jy the induced
homomorphism 71 (Gw, Xo) — 71 (Gv, Xo) -

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Examples

> Let a discrete group I" act on a connected manifold X; properly
discontinuously. Then (T, Xp) has an orbifold structure. Any loop can be
made into a G-path (1x, ¢, ) so that v(x) = ¢(1). and ¢(0) = x. Thus,
there is an exact sequence

1 — m1(Xo, X0) — m1((T, Xo), X0) = T — 1

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Examples

> Let a discrete group I" act on a connected manifold X; properly
discontinuously. Then (T, Xp) has an orbifold structure. Any loop can be
made into a G-path (1x, ¢, ) so that v(x) = ¢(1). and ¢(0) = x. Thus,
there is an exact sequence

1 — 71 (X0, X0) — 71 (T, X0), X0) = T — 1

» A two-orbifold that is a disk with an arc silvered has the fundamental
group isomorphic to Z,.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Examples

> Let a discrete group I" act on a connected manifold X; properly
discontinuously. Then (T, Xp) has an orbifold structure. Any loop can be
made into a G-path (1x, ¢, ) so that v(x) = ¢(1). and ¢(0) = x. Thus,
there is an exact sequence

1 — 71 (X0, X0) — 71 (T, X0), X0) = T — 1

» A two-orbifold that is a disk with an arc silvered has the fundamental
group isomorphic to Z,.

» A two-dimensional orbifold with cone-points which is boundaryless and
with no silvered point. (use Van Kampen)

Section 3: Topology of
orbifolds

S. Choi
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universal covering spaces



Examples

> Let a discrete group I" act on a connected manifold X; properly
discontinuously. Then (T, Xp) has an orbifold structure. Any loop can be
made into a G-path (1x, ¢, ) so that v(x) = ¢(1). and ¢(0) = x. Thus,
there is an exact sequence

1 — 71 (X0, X0) — 71 (T, X0), X0) = T — 1

» A two-orbifold that is a disk with an arc silvered has the fundamental
group isomorphic to Z,.

» A two-dimensional orbifold with cone-points which is boundaryless and
with no silvered point. (use Van Kampen)

» A tear drop: A sphere with one cone-point of order n has the trivial
fundamental group (use Van Kampen)

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Examples

» An annulus with one boundary component silvered has a fundamental
group isomorphic to Z x Z.
The fundamental group can be computed by removing open-ball
neighborhoods of the cone-points and using Van-Kampen theorem.
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Examples

» An annulus with one boundary component silvered has a fundamental
group isomorphic to Z x Z.
The fundamental group can be computed by removing open-ball
neighborhoods of the cone-points and using Van-Kampen theorem.

» Suppose that a two-dimensional orbifold has boundary and silvered
points. Then remove open-ball neighborhoods of the cone-points and
corner-reflector points. Then the fundamental group of remaining part can
be computed by Van-Kampen theorem by taking open neighborhoods of
silvered boundary arcs. Finally, adding the open-ball neighborhoods, we
compute the fundamental group.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Examples

» An annulus with one boundary component silvered has a fundamental
group isomorphic to Z x Z.
The fundamental group can be computed by removing open-ball
neighborhoods of the cone-points and using Van-Kampen theorem.

» Suppose that a two-dimensional orbifold has boundary and silvered
points. Then remove open-ball neighborhoods of the cone-points and
corner-reflector points. Then the fundamental group of remaining part can
be computed by Van-Kampen theorem by taking open neighborhoods of
silvered boundary arcs. Finally, adding the open-ball neighborhoods, we
compute the fundamental group.

» The fundamental group of a three-dimensional orbifold can be computed
similarly.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Seifert fibered 3-manifold Examples

» We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
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Seifert fibered 3-manifold Examples

» We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
» Xy will be the union of patches transversal to the fibers.

Section 3: Topology of
orbifolds
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Path-approach to the
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Seifert fibered 3-manifold Examples

» We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
» Xy will be the union of patches transversal to the fibers.
» X; will be the arrows obtained by the flow.

Section 3: Topology of
orbifolds
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Path-approach to the
universal covering spaces
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Seifert fibered 3-manifold Examples

v

\4

v

We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
Xo will be the union of patches transversal to the fibers.
X; will be the arrows obtained by the flow.

The orbifold X will be a 2-dimensional one with cone-points whose orders
are obtained as the numerators of the fiber-order.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Seifert fibered 3-manifold Examples

» We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
» Xy will be the union of patches transversal to the fibers.
» X; will be the arrows obtained by the flow.

» The orbifold X will be a 2-dimensional one with cone-points whose orders
are obtained as the numerators of the fiber-order.

» The fundamental group of X is then the quotient of the ordinary
fundamental group ¢ (M) by the central cyclic group Z generated by the
generic fiber.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Covering spaces and the fundamental group

» One can build the theory of covering spaces using the fundamental group.
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Covering spaces and the fundamental group

» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:
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Covering spaces and the fundamental group Seter e

S. Choi
» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:
> For every G-path cin X, there is a lift G-path in X”. If we assign the initial point, Path-approach to the
the lift is unique. universal covering spaces
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Covering spaces and the fundamental group Seter e

S. Choi

» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:

> For every G-path cin X, there is a lift G-path in X’. If we assign the initial point, R0
the lift is unique. universal covering spaces
> If ¢’ is homotopic to ¢, then the lift of ¢’ is also homotopic to the lift of ¢
provided the initial points are the same.
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Covering spaces and the fundamental group

» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:

>

>

>

For every G-path cin X, there is a lift G-path in X’. If we assign the initial point,
the lift is unique.

If ¢’ is homotopic to ¢, then the lift of ¢’ is also homotopic to the lift of ¢
provided the initial points are the same.

m1(X’, x§) — m1(X, xo) is injective.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Covering spaces and the fundamental group

» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:

> For every G-path cin X, there is a lift G-path in X’. If we assign the initial point,
the lift is unique.

> If ¢’ is homotopic to ¢, then the lift of ¢’ is also homotopic to the lift of ¢
provided the initial points are the same.

> (X', x§) = m(X, %) is injective.

> A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is
unique if the base-point lift is assigned. Thus, a simply connected cover of an
orbifold covers any cover of the given orbifold.

Section 3: Topology of
orbifolds

S. Choi

Path-approach to the
universal covering spaces
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Covering spaces and the fundamental group

» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:

>

>

>

For every G-path cin X, there is a lift G-path in X’. If we assign the initial point,
the lift is unique.

If ¢’ is homotopic to ¢, then the lift of ¢’ is also homotopic to the lift of ¢
provided the initial points are the same.

m1(X’, x§) — m1(X, xo) is injective.

A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is
unique if the base-point lift is assigned. Thus, a simply connected cover of an
orbifold covers any cover of the given orbifold.

From this, we can show that the fiber-product construction is simply-connected
and hence is a universal cover.
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Covering spaces and the fundamental group

» One can build the theory of covering spaces using the fundamental group.
» Given a covering X’ — X:

>

>

For every G-path cin X, there is a lift G-path in X’. If we assign the initial point,
the lift is unique.

If ¢’ is homotopic to ¢, then the lift of ¢’ is also homotopic to the lift of ¢
provided the initial points are the same.

m1(X’, x§) — m1(X, xo) is injective.

A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is
unique if the base-point lift is assigned. Thus, a simply connected cover of an
orbifold covers any cover of the given orbifold.

From this, we can show that the fiber-product construction is simply-connected
and hence is a universal cover.

Two simply-connected coverings of an orbifold are isomorphic and if
base-points are given, we can find an isomorphism preserving the base-points.
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Covering spaces and the fundamental group

» A simply-connected covering of an orbifold X is a Galois-covering with the
Galois-group isomorphic to 1 (X, Xp).
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Covering spaces and the fundamental group

» A simply-connected covering of an orbifold X is a Galois-covering with the
Galois-group isomorphic to 1 (X, Xp).

» Proof: Consider p—'(xp). Choose a base-point X, in it. Given a point of
p~"(xp), connected it with X, by a path. The paths map to the
fundamental group. The Galois-group acts transitively on p—'(x). Hence
the Galois-group is isomorphic to the fundamental group.
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The existence of the universal cover using path-approach

» The construction follows that of the ordinary covering space theory.
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The existence of the universal cover using path-approach

» The construction follows that of the ordinary covering space theory.

> Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting
point xo.
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The existence of the universal cover using path-approach

» The construction follows that of the ordinary covering space theory.

> Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting
point xo.

> We define a topology on X by open set Uy that is the set of paths ending at a
simply-connected open subset U of X with homotopy class ¢ * d for a path d in
u.
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The existence of the universal cover using path-approach

» The construction follows that of the ordinary covering space theory.

>

Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting
point xo.

We define a topology on X by open set Uy that is the set of paths ending at a
simply-connected open subset U of X with homotopy class ¢ * d for a path d in

Défine amap X — X sending [c] to its endpoint other than xg.
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The existence of the universal cover using path-approach R

S. Choi

» The construction follows that of the ordinary covering space theory.

> Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting

point xo. R Path-approach to the

> We define a topology on X by open set Uy that is the set of paths ending at a Lreelicnringitosces
simply-connected open subset U of X with homotopy class ¢ * d for a path d in
U

> Défine amap X — X sending [c] to its endpoint other than xg.
> Defineamap X x X; — X given by ([c], g) — [c * g]. This defines a right
G-action on X. This makes X into a bundle.
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The existence of the universal cover using path-approach Seter e

S. Choi

» The construction follows that of the ordinary covering space theory.

> Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting
point Xp. R Path-approach to the

> We define a topology on X by open set Uy that is the set of paths ending at a Lreelicnringitosces
simply-connected open subset U of X with homotopy class ¢ * d for a path d in
U

> Define a map X — X sending [c] to its endpoint other than xg.

> Defineamap X x X; — X given by ([c], g) — [c * g]. This defines a right
G-action on X. This makes X into a bundle.

> Define a left action of (X, xo) on X given by [c] * [¢'] = [c * ¢/] for
[¢'] € m1(X, Xo). This is transitive on fibers.
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The existence of the universal cover using path-approach R

S. Choi

» The construction follows that of the ordinary covering space theory.

> Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting

point xo. R Path-approach to the

> We define a topology on X by open set Uy that is the set of paths ending at a Lreelicnringitosces
simply-connected open subset U of X with homotopy class ¢ * d for a path d in
U

> Define a map X — X sending [c] to its endpoint other than xg.

> Defineamap X x X; — X given by ([c], g) — [c * g]. This defines a right
G-action on X. This makes X into a bundle.

> Define a left action of (X, xo) on X given by [c] * [¢'] = [c * ¢/] for
[¢'] € m1(X, Xo). This is transitive on fibers.

> We show that X is a simply connected orbifold.
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