1 Introduction

About this lecture

- Notions of Inference
- Inference Rules
- Hypothetical Rules
- Derived Rules
- The Propositional Rules
- Equivalences
- We do up to Hypothetical Rules in Lecture 5.
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "Realism, Informal logic 2. Deductivism and beyond," and "Nondeductive methods in mathematics."
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations in Sentential Calculus". (or SC Derivations.)
- http://jvrosset.free.fr/Goedel-Proof-Truth.pdf "Does Godels incompleteness prove that truth transcends proof?"

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

2 The notion of inference

The realism and antirealism

- If the tree fall in a forest, and no one was there to heard it, did it make a sound? (Berkeley)
- Realism believes in existence and independence of certain objects and so on.
 This is very close to logical atomism.
- Antirealism: One has to test to find out before it can considered to exists and so on.
- Since we do not know everything, which should we take as a position?

The notion of inference

- From a valid set of "assumptions" or "theorems" we wish to deduce more true statement.
- We give a collection of ten rules of inference that gives you true statements from assumptions. (The collection of rules depend on books but essentially equivalent.) (Some Postmordernist will call these just Rhetorics.)
- Inference = Deduction = Proof.
- This is actually weaker than TF table or truth tree method.
- If you take the antirealist's position, the deductions are only valid method. But we could also take the realist's position.
- The reason for doing it is that for Predicate calculus, TF methods cannot work since we have to check infinitely many cases. (incompleteness)

3 Nonhypothetical Inference Rules

Nonhypothetical Inference Rules

- Modus Ponens or condition eliminations $(\rightarrow E)$. From a conditional and its antecendent, we can infer the consequent.
- $P, P \rightarrow Q, \vdash Q$.
- We can check in truth table.
- Example:
- $P, Q \rightarrow R, P \rightarrow Q, \vdash R$.
- We need two $(\rightarrow E)$.

More rules

- Negation elimination $(\neg E)$: $\neg \neg \phi \rightarrow \phi$.
- Conjunction introduction ($\wedge I$): $\phi, \psi \to \phi \wedge \psi$.
- Conjunction elimination ($\wedge E$): $\phi \wedge \psi \rightarrow \phi, \psi$.
- Disjunction introduction ($\vee I$): $\phi \to \phi \vee \psi$ for any wff ψ .
- Disjuction elimination ($\vee E$): $\phi \vee \psi$, $\phi \to \chi$, $\psi \to \chi$. Then infer χ .
- Biconditional introduction.($\leftrightarrow I$): $\phi \to \psi$, $\psi \to \phi$. Then $\phi \leftrightarrow \psi$.
- Biconditional elimination. $(\leftrightarrow E)$: $\phi \leftrightarrow \psi$. Then $\phi \to \psi$, $\psi \to \phi$.

Example 1

- $P \vdash (P \lor Q) \land (P \lor R)$.
- 1. P. Assumption
- 2. $P \lor Q$. 1. $\lor I$.
- 3. $P \vee R$. 1. $\vee I$.
- 4. $(P \lor Q) \land (P \lor R)$. 2.3. $\land I$.

Example 2

- $P, \neg \neg (P \rightarrow Q) \vdash (R \land S) \lor Q$.
- 1. P. Assumption
- 2. $\neg \neg (P \rightarrow Q)$. A.
- 3. $P \rightarrow Q$. 2. $\neg E$.
- 4. $Q. 1.3. \rightarrow E.$
- 5. $(R \wedge S) \vee Q$ 4. $\vee I$.

Example 3

- $P \lor P, P \to (Q \land R) \vdash R$.
- 1. *P* ∨ *P*. A.
- 2. $P \rightarrow (Q \land R)$. A.
- 3. $Q \wedge R$. 1, 2. $\vee E$.
- 4. *R*. 3. ∧*E*.

4 Hypothetical Rules

Hypothetical Rules

- Conditional introduction (\to I): Given a derivation of ϕ with help of ψ , we infer $\psi \to \phi$.
- Example:
- $P \to Q, \, Q \to R \vdash P \to R$. (Socrates is human, Humans are mortal, Thus, Socrates is mortal.)
- $P \rightarrow Q$. A.
- $Q \rightarrow R$. A.
- : P. H.
- : Q. 1,3, $\to E$.
- : $R. 2.4, \rightarrow E.$
- $P \to R$. 3-5. $\to I$.

Example

- $(P \land Q) \lor (P \land R) \vdash P \land (Q \lor R)$.
- 1. $(P \wedge Q) \vee (P \wedge R)$. A
- 2. : $P \wedge Q$. H
- 3. : P 2. $\wedge E$.
- 4. : Q 2. $\wedge E$.
- 5. : $Q \vee R$. 4. $\vee I$.
- 6: $P \wedge (Q \vee R)$. 3.5. $\wedge I$.
- 7. $(P \land Q) \rightarrow (P \land (Q \lor R))$. 2-6 \rightarrow *I*.
- 8. : $P \wedge R$. H
- 9. : P 8. $\wedge E$.
- 10. : R 8. $\wedge E$.
- 11. : $Q \vee R$. 10. $\vee I$.
- 12 : $P \wedge (Q \vee R)$. 9.11. $\wedge I$.
- 13. $(P \wedge R) \rightarrow (P \wedge (Q \vee R))$. 2-6 \rightarrow *I*.
- 14. $P \wedge (Q \vee R)$. 1.7.13 $\vee E$.

Note

- Every hypothesis introduced begins at a new line.
- No occurance of a formula to the right of a vertical line may be cited after the line ended. (There may be multiple lines. See 4.20)
- If two or more hypothesis are ineffect, then the order that they are discharged is reverse.
- A proof is not valid until all the hypothesis is discharged.

Negation introduction

- Negation introduction $(\neg I)$. Reductio ad absurdum, indirect proof.
- Given a derivation of absurdity from a hypothesis $\neg \phi$, we infer ϕ .

$$- \neg P \rightarrow P, \vdash P.$$

- 1.
$$\neg P$$
 → P . A.

- 2. :
$$\neg P$$
. H (for $\neg I$)

$$-$$
 3. : *P*, 1.2, (→ *E*)

- 4. :
$$P \land \neg P$$
. 2.3 (∧ I).

Example

- $P \rightarrow Q \vdash \neg P \lor Q$.
- 1. $P \rightarrow Q$.
- 2. : $\neg(\neg P \lor Q)$. H (for $\neg I$.)
- 3. :: P. H.(for $\neg I$).
- 4. :: Q. 1.3. ($\rightarrow E$)
- 5. :: $\neg P \lor Q$. 4 $\lor I$.
- 6. :: $(\neg P \lor Q) \land \neg (\neg P \lor Q)$. 2.5. $\land I$.
- 7. : $\neg P$. 3-6 $\neg I$.
- 8. : $\neg P \lor Q$. 7. $\lor I$.
- 9. : $(\neg P \lor Q) \land \neg (\neg P \lor Q)$. 2. $8 \land I$.
- 10. $\neg \neg (\neg P \lor Q)$. 2-9 $\neg I$.
- 11. $\neg P \lor Q$. 10. $\neg E$.