1 Introduction #### About this lecture - Notions of Inference - Inference Rules - Hypothetical Rules - Derived Rules - The Propositional Rules - Equivalences - We do up to Hypothetical Rules in Lecture 5. - Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr - Grading and so on in the moodle. Ask questions in moodle. # Some helpful references - Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill - A mathematical introduction to logic, H. Enderton, Academic Press. - Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.) - http://plato.stanford.edu/contents.html has much resource. See "Realism, Informal logic 2. Deductivism and beyond," and "Nondeductive methods in mathematics." - http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/CourseHome/ See "Derivations in Sentential Calculus". (or SC Derivations.) - http://jvrosset.free.fr/Goedel-Proof-Truth.pdf "Does Godels incompleteness prove that truth transcends proof?" #### Some helpful references - http://en.wikipedia.org/wiki/Truth_table, - http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps) - http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete. ## 2 The notion of inference #### The realism and antirealism - If the tree fall in a forest, and no one was there to heard it, did it make a sound? (Berkeley) - Realism believes in existence and independence of certain objects and so on. This is very close to logical atomism. - Antirealism: One has to test to find out before it can considered to exists and so on. - Since we do not know everything, which should we take as a position? #### The notion of inference - From a valid set of "assumptions" or "theorems" we wish to deduce more true statement. - We give a collection of ten rules of inference that gives you true statements from assumptions. (The collection of rules depend on books but essentially equivalent.) (Some Postmordernist will call these just Rhetorics.) - Inference = Deduction = Proof. - This is actually weaker than TF table or truth tree method. - If you take the antirealist's position, the deductions are only valid method. But we could also take the realist's position. - The reason for doing it is that for Predicate calculus, TF methods cannot work since we have to check infinitely many cases. (incompleteness) # 3 Nonhypothetical Inference Rules #### **Nonhypothetical Inference Rules** - Modus Ponens or condition eliminations $(\rightarrow E)$. From a conditional and its antecendent, we can infer the consequent. - $P, P \rightarrow Q, \vdash Q$. - We can check in truth table. - Example: - $P, Q \rightarrow R, P \rightarrow Q, \vdash R$. - We need two $(\rightarrow E)$. ## More rules - Negation elimination $(\neg E)$: $\neg \neg \phi \rightarrow \phi$. - Conjunction introduction ($\wedge I$): $\phi, \psi \to \phi \wedge \psi$. - Conjunction elimination ($\wedge E$): $\phi \wedge \psi \rightarrow \phi, \psi$. - Disjunction introduction ($\vee I$): $\phi \to \phi \vee \psi$ for any wff ψ . - Disjuction elimination ($\vee E$): $\phi \vee \psi$, $\phi \to \chi$, $\psi \to \chi$. Then infer χ . - Biconditional introduction.($\leftrightarrow I$): $\phi \to \psi$, $\psi \to \phi$. Then $\phi \leftrightarrow \psi$. - Biconditional elimination. $(\leftrightarrow E)$: $\phi \leftrightarrow \psi$. Then $\phi \to \psi$, $\psi \to \phi$. ## Example 1 - $P \vdash (P \lor Q) \land (P \lor R)$. - 1. P. Assumption - 2. $P \lor Q$. 1. $\lor I$. - 3. $P \vee R$. 1. $\vee I$. - 4. $(P \lor Q) \land (P \lor R)$. 2.3. $\land I$. # Example 2 - $P, \neg \neg (P \rightarrow Q) \vdash (R \land S) \lor Q$. - 1. P. Assumption - 2. $\neg \neg (P \rightarrow Q)$. A. - 3. $P \rightarrow Q$. 2. $\neg E$. - 4. $Q. 1.3. \rightarrow E.$ - 5. $(R \wedge S) \vee Q$ 4. $\vee I$. ### Example 3 - $P \lor P, P \to (Q \land R) \vdash R$. - 1. *P* ∨ *P*. A. - 2. $P \rightarrow (Q \land R)$. A. - 3. $Q \wedge R$. 1, 2. $\vee E$. - 4. *R*. 3. ∧*E*. # 4 Hypothetical Rules ## **Hypothetical Rules** - Conditional introduction (\to I): Given a derivation of ϕ with help of ψ , we infer $\psi \to \phi$. - Example: - $P \to Q, \, Q \to R \vdash P \to R$. (Socrates is human, Humans are mortal, Thus, Socrates is mortal.) - $P \rightarrow Q$. A. - $Q \rightarrow R$. A. - : P. H. - : Q. 1,3, $\to E$. - : $R. 2.4, \rightarrow E.$ - $P \to R$. 3-5. $\to I$. #### **Example** - $(P \land Q) \lor (P \land R) \vdash P \land (Q \lor R)$. - 1. $(P \wedge Q) \vee (P \wedge R)$. A - 2. : $P \wedge Q$. H - 3. : P 2. $\wedge E$. - 4. : Q 2. $\wedge E$. - 5. : $Q \vee R$. 4. $\vee I$. - 6: $P \wedge (Q \vee R)$. 3.5. $\wedge I$. - 7. $(P \land Q) \rightarrow (P \land (Q \lor R))$. 2-6 \rightarrow *I*. - 8. : $P \wedge R$. H - 9. : P 8. $\wedge E$. - 10. : R 8. $\wedge E$. - 11. : $Q \vee R$. 10. $\vee I$. - 12 : $P \wedge (Q \vee R)$. 9.11. $\wedge I$. - 13. $(P \wedge R) \rightarrow (P \wedge (Q \vee R))$. 2-6 \rightarrow *I*. - 14. $P \wedge (Q \vee R)$. 1.7.13 $\vee E$. ### Note - Every hypothesis introduced begins at a new line. - No occurance of a formula to the right of a vertical line may be cited after the line ended. (There may be multiple lines. See 4.20) - If two or more hypothesis are ineffect, then the order that they are discharged is reverse. - A proof is not valid until all the hypothesis is discharged. ## **Negation introduction** - Negation introduction $(\neg I)$. Reductio ad absurdum, indirect proof. - Given a derivation of absurdity from a hypothesis $\neg \phi$, we infer ϕ . $$- \neg P \rightarrow P, \vdash P.$$ **-** 1. $$\neg P$$ → P . A. - 2. : $$\neg P$$. H (for $\neg I$) $$-$$ 3. : *P*, 1.2, (→ *E*) **-** 4. : $$P \land \neg P$$. 2.3 (∧ I). #### **Example** - $P \rightarrow Q \vdash \neg P \lor Q$. - 1. $P \rightarrow Q$. - 2. : $\neg(\neg P \lor Q)$. H (for $\neg I$.) - 3. :: P. H.(for $\neg I$). - 4. :: Q. 1.3. ($\rightarrow E$) - 5. :: $\neg P \lor Q$. 4 $\lor I$. - 6. :: $(\neg P \lor Q) \land \neg (\neg P \lor Q)$. 2.5. $\land I$. - 7. : $\neg P$. 3-6 $\neg I$. - 8. : $\neg P \lor Q$. 7. $\lor I$. - 9. : $(\neg P \lor Q) \land \neg (\neg P \lor Q)$. 2. $8 \land I$. - 10. $\neg \neg (\neg P \lor Q)$. 2-9 $\neg I$. - 11. $\neg P \lor Q$. 10. $\neg E$.