1 Introduction

About this lecture

- Notions of Inference
- Inference Rules
- Hypothetical Rules
- Derived Rules
- The Propositional Rules
- Equivalences
- The soundness and the completeness of deductions.
- We go over the last three Hypothetical Rules in Lecture 6.
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "classical logic".
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/ CourseHome/ See "Derivations in Sentential Calculus". (or SC Derivations.) and "The completeness of the SC rules."
- http://jvrosset.free.fr/Goedel-Proof-Truth.pdf "Does Godels incompleteness prove that truth transcends proof?"

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

2 Derived Rules

Derived Rules

- Suppose that one proved a logical formula, which are not in the ten elementary rules. Then we can substitute the symbols with wffs and still obtain valid logical formula.
- Example: $P \to Q, \neg Q \vdash \neg P$. (Modus Tollens (MT)).
- Substitution instance: P to $(R \vee S)$ and Q to $\neg C$. Then obtain $(R \vee S) \to \neg C$, $\neg \neg C$. $\vdash \neg (R \vee S)$.

Examples

- Prove MT:
- 1. $P \rightarrow Q$ A
- 2. ¬*Q* A.
- 3.: $\neg \neg P$. for $\neg I$.
- 4.: *P*. ¬*E*.
- 5.: $Q 1, 4 \leftarrow E$.
- 6.: $Q \wedge \neg Q$. 2.5. $\wedge I$.
- 7. ¬P.

Derived Rules

- Modus Tollens (MT): $P \rightarrow Q, \neg Q \vdash \neg P$.
- Hypothetical syllogism (HS): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$.
- Absorption (ABS): $P \to Q \vdash P \to (P \land Q)$.
- Constructive Dilemma (CD): $P \lor Q, P \to R, Q \to S \vdash R \lor S$.
- Repeat or Reiteration (RE): $P \vdash Q \rightarrow P$.
- Contradiction (CON): $P, \neg P \vdash Q$.
- Disjunctive syllogism (DS): $P \lor Q, \neg P \vdash Q$.

Examples

- Prove CD: $P \lor Q$, $P \to R$, $Q \to S \vdash R \lor S$.
- 1. $P \vee Q$ A
- 2. $P \rightarrow R$ A.
- 3. $Q \rightarrow S$. A.
- 4.: P for $\rightarrow I$.
- 5.: $R \text{ from } \rightarrow E$.
- 6.: $R \vee S \vee I$.
- 7. $P \rightarrow (R \vee S)$.
- 8.: Q for $\rightarrow I$.
- 9.: *S*.
- 10.: $R \vee S$.
- 11. $Q \rightarrow (R \lor S)$.
- 12. $R \vee S$.

Examples

- Prove DS: $P \lor Q, \neg P \vdash Q$.
- 1. $P \lor Q$ A
- 2. ¬*P* A.
- 3.: P for $\rightarrow I$.
- 4.: Q. 2.3. (CON)
- 5. $P \rightarrow Q$.
- 6.: Q for $\rightarrow I$.
- 7: $Q \rightarrow Q$.
- 8. Q.

3 Theorems

Theorems

- Theorems are wff deduced from no assumptions. They are just tautologies. (At least in this book)
- $\neg (P \land \neg P)$, or $\neg P \lor P$.
- $P \to ((P \to Q) \to Q)$.
- $P \rightarrow (Q \rightarrow P)$.
- $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R)).$
- $(((\neg P \to \neg Q) \to (Q \to P)).$

Example

- Deduce (Prove) $\vdash ((\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)).$
- 1. : $\neg P \rightarrow \neg Q$ H. for $\rightarrow I$.
- 2. :: Q. H for $\rightarrow I$.
- 3. ::: ¬*P*
- 4. ::: $\neg Q$. 1.3.
- 5. ::: $Q \wedge \neg Q$.
- 6. :: *P*
- 7. : $Q \to P$. 2-5
- 8. $\neg P \rightarrow \neg Q \rightarrow (Q \rightarrow P)$.

Example

- Deduce $\vdash (P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$.
- 1. : $(P \rightarrow (Q \rightarrow R))$ for $\rightarrow I$.
- 2. :: $(P \rightarrow Q)$ for $\rightarrow I$.
- 3. ::: P for $\rightarrow I$.
- 4. ::: $(Q \to R)$ 1.3.
- 5. ::: $P \to R$. 2.4.
- 6. ::: *R*.
- 7. :: $P \to R$. 3-6
- 8.: $(P \to Q) \to (P \to R)$. 2-7
- 9. $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ 1-8.

4 Equivalences

Equivalences

- Equivalences $\phi \leftrightarrow \psi$ for two wff ϕ and ψ . We prove by $\phi \to \psi$ and $\psi \to \phi$.
- Clearly, equivalence is exactly a tautology for the form $\phi \leftrightarrow \psi$.
- The equivalences can be used to replace some subwffs with equivalent subwffs.
- $\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$. DeMorgan's law. (DM)
- $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$. (DM)
- $P \lor Q \leftrightarrow Q \lor P$. Commutation (COM)
- $P \wedge Q \leftrightarrow Q \wedge P$. (COM)
- $P \lor (Q \lor R) \leftrightarrow (P \lor Q) \lor R$. Association (ASSOC).
- $P \wedge (Q \wedge R) \leftrightarrow (P \wedge Q) \wedge R$. Association (ASSOC).

More equivalences

- $P \wedge (Q \vee R) \leftrightarrow (P \wedge Q) \vee (P \wedge R)$. Distribution (DIST)
- $P \lor (Q \land R) \leftrightarrow (P \lor Q) \land (P \lor R)$. (DIST)
- $P \leftrightarrow \neg \neg P$. Double negation (DN)
- $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$. Transposition (TRANS)
- $(P \to Q) \leftrightarrow (\neg P \lor Q)$. Material Implication (MI)
- $(P \land Q) \rightarrow R \leftrightarrow (P \rightarrow (Q \rightarrow R))$. Exportation (EXP)
- $P \leftrightarrow (P \land P)$. Tautology (TAUT)
- $P \leftrightarrow (P \lor P)$. (TAUT)
- The equivalences can be verified by the truth table method or by deduction.

More derived rules

- Theorem introduction (TI): Any substituted version of a theorem may be introduced with at any line of the proof.
- Equivalence introduction (using above notations): Given χ with subwff ϕ and an equivalence $\phi \leftrightarrow \psi$, we deduce χ' with some subwffs of form ϕ replaced with subwffs of form ψ .

Example

- We use the equivalence $\neg P \lor Q \leftrightarrow \neg (P \land \neg Q)$. DM.
- We shall prove that $\neg P \lor Q, \vdash P \to Q$
- 1. $\neg P \lor Q$. A
- 2. : P H. for $\rightarrow I$.
- 3. :: $\neg Q$ H for $\neg I$.
- 4. :: $P \wedge \neg Q$.
- 5. :: $\neg (P \land \neg Q)$. 1. (DM)
- 6. :: $(P \land \neg Q) \land \neg (P \land \neg Q)$.
- 7.: Q. 3-6
- 8. $P \to Q$. 2-7.

4.1 Soundness and completeness of deductions

Soundness

- A logical system is a formal system with
 - An alphabet, a set of statement symbols with logical connectives.
 - well-formed formulas
 - A set of axioms.
 - Rules of inference.
- See also http://plato.stanford.edu/entries/logic-classical/
- A logical system is consistent if not all wff can be deduced. (Equivalently, exactly one of ϕ and $\neg \phi$ can be deduced.)
- Given any truth-false assignment to atomic formula so that the axioms are all
 true, the soundness means that by applying rules of inference you obtain true
 statements only.
- That is, we cannot deduce a falsehood.

Completeness

- The completeness means that if a formula is true from logical truth assignment from a set of assumptions Σ , then the formula can be deduced from Σ .
- This is true for the first order theories but not true for higher-order theories. Also, true if there are finitely or countably many statement symbols.
- See Chapters 3 and 4 of Cameron.