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About this lecture

@ Sets (HTP Sections 1.3, 1.4)

@ Quantifiers and sets (HTP 2.1)

@ Equivalences involving quantifiers (HTP 2.2)
@ More operations on sets (HTP 2.3)

@ Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

@ Grading and so on in the moodle. Ask questions in moodle.
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@ Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters
3,4,5.

@ A mathematical introduction to logic, H. Enderton, Academic Press.
@ http://plato.stanford.edu/contents.html has much resource.
@ Introduction to set theory, Hrbacek and Jech, CRC Press.
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Some helpful references

@ http://en.wikipedia.org/wiki/Truth_table,

@ http://logik.phl.univie.ac.at/~chris/gateway/
formular—uk-zentral.html, complete (i.e. has all the steps)

@ http://svn.oriontransfer.org/TruthTable/index.rhtml,
has xor, complete.
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@ A setis a collection....This naive notion is fairly good.

@ The set theory is compatible with logic.

@ Symbols €, {}. (belong, included)

o {{1L{UH U

@ {a}. We hold that ae {a,b,c,...}.

@ The main thrust of the set theory is the theory of description by Russell.
@ P(x): x is a variable. P(x) is the statement that x is a prime number
@ y € {x|P(x)} is equivalent to P(y). That is the truth set of P.

@ Sets «+» Properties

@ D(p, q): pis divisible by q.
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Sets

@ A setis a collection....This naive notion is fairly good.

@ The set theory is compatible with logic.

@ Symbols €, {}. (belong, included)

o {{1{{}1{{{}}}}

@ {a}. We hold that ae {a,b,c,...}.

@ The main thrust of the set theory is the theory of description by Russell.
@ P(x): x is a variable. P(x) is the statement that x is a prime number
@ y € {x|P(x)} is equivalent to P(y). That is the truth set of P.

@ Sets «+» Properties

@ D(p, q): pis divisible by q.

@ Aset B = {x|x is a prime number }.

@ x € B. What does this mean?
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Axioms of the set theory (Naive version)

@ There exists a set which has no elements. (Existence)

@ Two sets are equal if and only if they have the same elements.
(Extensionality)

@ There exists a set B= {x € A|P(x)} if Ais a set. (Comprehension)

@ For any two sets, there exists a set that they both belong to. That is, if A
and B are sets, there is {A, B}. (Pairing)

@ For any collection of sets, there exists a unique set that contains all the
elements that belong to at least one set in the collection. (Union)
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Axioms of the set theory (Naive version)

@ Given each set, there exists a collection of sets that contains among its
elements all the subset of the given set. (Power set)
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Axioms of the set theory (Naive version)

@ Given each set, there exists a collection of sets that contains among its
elements all the subset of the given set. (Power set)

@ An inductive set exists (Infinity)

@ Let P(x, y) be a property that for every x, there exists unique y so that
P(x,y) holds. Then for every set A, there is a set B such that for every
x € A, there is y € B so that P(x, y) holds. (Substitution)
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Axioms of the set theory (Naive version)

@ Given each set, there exists a collection of sets that contains among its
elements all the subset of the given set. (Power set)

@ An inductive set exists (Infinity)

@ Let P(x, y) be a property that for every x, there exists unique y so that
P(x,y) holds. Then for every set A, there is a set B such that for every
x € A, there is y € B so that P(x, y) holds. (Substitution)

@ Zermelo-Fraenkel theory has more axioms...The axiom of foundation, the
axiom of choice.(ZFQC)
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@ Z = {x|x is an integer.}.
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Example

@ N = {x|x is a natual number.}.

@ Z = {x|x is an integer.}.

@ Q = {x|x is a rational number.}

@ R = {x|x is a real number. }.

e {x|x2>9,x e R}.

@ y e {x e AlP(x)}is equivalentto y € AN P(y).
@ () is the empty set.
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@ Ac Bifandonly if Yx(x € A— x € B).
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Operations on sets

@ Ac Bifandonly if Yx(x € A— x € B).
e AnB={x|x € AAnXx € B}.

@ AUB={x|xe AV x € B}.

e AnNBC AUB.

[m] = -
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Operations on sets

@ Ac Bifandonly if Yx(x € A— x € B).
e AnB={x|x € AAnXx € B}.

@ AUB={x|xe AV x € B}.

e AnNBC AUB.

e A—-B={x|xc AAnXx ¢ B}.

S. Choi (KAIST) Logic and set theory October 7, 2012 9/26



Operations on sets

@ Ac Bifandonly if Yx(x € A— x € B).
e AnB={x|x € AAnXx € B}.

@ AUB={x|xe AV x € B}.

e AnNBC AUB.

e A—-B={x|xc AAnXx ¢ B}.

@ A= (ifand only if =3x(x € A).
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@ How can one verify two sets are disjoint, same, smaller, bigger, or none
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Set theoretic problem

@ When is the set empty?

@ How can one verify two sets are disjoint, same, smaller, bigger, or none
of the above?

@ Answer: We use logic and the model theory.

@ ACBmeansxec A— x e B.

@ Equality of Aand B means x € Aif and only if x € B.
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Set theoretic problem

@ When is the set empty?

@ How can one verify two sets are disjoint, same, smaller, bigger, or none
of the above?

@ Answer: We use logic and the model theory.

@ ACBmeansxec A— x e B.

@ Equality of Aand B means x € Aif and only if x € B.

e AU(BNC)=(AUB)N(AU(C)?

@ xc Au(BnOC)

@ xcAv(xeBAaxeC).

@ (xe AvxeB)A(xe Avxe C). DIST

@ Thus,x c AU(BNC) <« (xe AvxeB)A(xe Avx e C).
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Set theoretic problem

@ When is the set empty?

@ How can one verify two sets are disjoint, same, smaller, bigger, or none
of the above?

@ Answer: We use logic and the model theory.

@ ACBmeansxec A— x e B.

@ Equality of Aand B means x € Aif and only if x € B.

e AU(BNC)=(AUB)N(AU(C)?

@ xc Au(BnOC)

@ xcAv(xeBAaxeC).

@ (xe AvxeB)A(xe Avxe C). DIST

@ Thus,x c AU(BNC) <« (xe AvxeB)A(xe Avx e C).
@ One can use Venn diagrams....
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@ Compare (A—B)—-C,(A—-B)n(A-C),(A—-B)U(A-C).
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@ Compare (A—B)—-C,(A—-B)n(A-C),(A—-B)U(A-C).
e xc(A-B)Ax¢C.(xcArnx¢B)AXx ¢ C.
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e (A-B)n(A-2C).
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e xc(A-B)Ax¢C.(xcArnx¢B)AXx ¢ C.
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More set theoretic problem

@ Compare (A—-B)—-C,(A-B)n(A-C),(A-B)U(A-C).
o xc(A-B)Ax¢ C.(xcArnx¢B)Ax ¢ C.

@ (xe AAnx¢B)vV(xeAnx¢C).

@ (A-B)n(A-20C).

@ Wecanshow (A—-B)—Cc (A-B)U(A—-C).
@Is(A-B)u(A-C)c(A-B)-C?
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More set theoretic problem

@ Compare (A—-B)—-C,(A-B)n(A-C),(A-B)U(A-C).
o xc(A-B)Ax¢ C.(xcArnx¢B)Ax ¢ C.

@ (xe AAnx¢B)vV(xeAnx¢C).

@ (A-B)n(A-20C).

@ Wecanshow (A—-B)—Cc (A-B)U(A—-C).
@Is(A-B)u(A-C)c(A-B)-C?

@ Use logic to find examples.
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More set theoretic problem

@ Comparing (A—B)— Cand (A— B)U(A- C).
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@ Comparing (A—B)— Cand (A— B)U(A- C).
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@ Comparing (A—B)— Cand (A— B)U(A- C).
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More set theoretic problem

@ Comparing (A—B)— Cand (A—B)U(A- C).

e xc(A-B)Ax¢ Cand(xc Anx¢ B)A ¢ C.

@ (xcAAXx¢B)V(xeAnx¢OC).

o VXx((x e AAX¢B)V(XeAAX¢C)) - (xeAAx¢B)Ax¢ C)is
invalid.
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More set theoretic problem

@ Comparing (A—B)— Cand (A—B)U(A- C).

o xc(A-B)Ax¢ Cand (xe AAx ¢ B)A ¢ C.

@ (xe AANx¢B)V(xeAAx ¢ Q).

o Vx((x e AANX¢B)V(xe AAXx ¢ C)) = (xecAAx¢B)Ax¢C)is
invalid.

@ Find the counter-example...(Using what?)
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Quantifiers and sets

@ AN B C B - C. Translate this to logic

=} F = = DA
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Quantifiers and sets

@ AN B C B - C. Translate this to logic
o Vx((xe AAxeB)— (xe BAx ¢ Q).
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Quantifiers and sets

@ AN B c B - C. Translate this to logic
o Vx((xe AAxeB)— (xe BAx ¢ Q).
@ If AcC B, then Aand C — B are disjoint.
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Quantifiers and sets

@ AN B c B - C. Translate this to logic

o Vx((xe AAxeB)— (xe BAx ¢ Q).

@ If AcC B, then Aand C — B are disjoint.

o Vx(xe A—»xeB)—-Ix(xe Anx e (C— B)).

S. Choi (KAIST) Logic and set theory October 7, 2012 13/26



Quantifiers and sets

@ AN B c B - C. Translate this to logic

o Vx((xe AAxeB)— (xe BAx ¢ Q).

@ If AcC B, then Aand C — B are disjoint.

o Vx(xe A—»xeB)—-Ix(xe Anx e (C— B)).
e Vx(xeA—-xeB)— -Ix(xc Arxe CAX ¢B).

S. Choi (KAIST) Logic and set theory October 7, 2012 13/26



Examples

only if a > —2.

@ For every number a, the equation ax? + 4x — 2 = 0 has a solution if and
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Examples

@ For every number a, the equation ax? + 4x — 2 = 0 has a solution if and
only ifa> —2.
@ Use R.
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Examples

@ For every number a, the equation ax? + 4x — 2 = 0 has a solution if and
only if a > —2.

@ UseR.

@ Va(a> -2« Ix e R(ax? + 4x — 2 = 0)).
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Examples

@ For every number a, the equation ax? + 4x — 2 = 0 has a solution if and
only if a > —2.

@ Use R.
@ Va(a> -2« Ix e R(ax? + 4x — 2 = 0)).
@ |s this true? How does one verify this...

S. Choi (KAIST) Logic and set theory October 7, 2012 14/26
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@ —Vx P(x) < Ix—P(x).
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Equivalences involving quantifiers
@ —Vx P(x) < Ix—P(x).

@ —3Ix P(x) « Yx—P(x).

=} F = = DA
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Equivalences involving quantifiers
@ —Vx P(x) < Ix—P(x).

@ —3Ix P(x) « Yx—P(x).
@ Negation of AC B.
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Equivalences involving quantifiers

Equivalences involving quantifiers

-Vx  P(x) < 3Ix=P(x).
-3x  P(x) < Vx=P(x).
Negation of A C B.
-Vx(x € A— x € B).
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Equivalences involving quantifiers

Equivalences involving quantifiers

-Vx  P(x) < 3Ix=P(x).
-3x  P(x) < Vx=P(x).
Negation of A C B.
-Vx(x € A— x € B).
Ix—(x € A— x € B).

it

S
»
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Equivalences involving quantifiers

—Vx  P(x) + Ix-P(x).

-3x  P(x) < Vx=P(x).

Negation of A C B.

-Vx(x € A— x € B).

Ix—(x € A— x € B).

Ix—(x ¢ AV x € B). ML. (conditional law)
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Equivalences involving quantifiers

—Vx  P(x) + Ix-P(x).

-3x  P(x) < Vx=P(x).

Negation of A C B.

-Vx(x € A— x € B).

Ix—(x € A— x € B).

Ix—(x ¢ AV x € B). ML. (conditional law)
Ix(x e AANx ¢ B). DM.
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Equivalences involving quantifiers

@ —Vx P(x) <+ Ix-P(x).

@ —Ix P(x) < Vx—P(x).

@ Negation of A C B.

@ Vx(xe A— x € B).

@ Ix—(x € A— x € B).

@ dx—(x ¢ AV x € B). MI. (conditional law)
@ Ix(x e AN X ¢ B). DM.

@ There exists an element of A not in B.

S. Choi (KAIST) Logic and set theory October 7, 2012 15/26



@ dx € A P(x) is defined as Ix(x € AA P(x)).
o <« - = DA



Equivalences involving quantifiers

@ dx € A P(x) is defined as Ix(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A — P(x)).

=} F = = DA
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Equivalences involving quantifiers

@ dx € A P(x) is defined as Ix(x € AA P(x)).

X
@ Vx € A P(x)is defined as Vx(x € A — P(x)).
@ VxeA P(x)+ Ix e A-P(x).
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Equivalences involving quantifiers

@ dx € A P(x) is defined as Ix(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A — P(x)).
@ VxeA P(x)«+ Ix € A-P(x).

@ proof: =Vx(x € A— P(x)).
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Equivalences involving quantifiers

@ dx € A P(x) is defined as Ix(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A — P(x)).
@ VxeA P(x)«+ Ix € A-P(x).

@ proof: =Vx(x € A— P(x)).

@ Ix—(x € A— P(x)).
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Equivalences involving quantifiers

dx € A P(x) is defined as Ix(x € AA P(x)).
Vx € A P(x) is defined as Vx(x € A — P(x)).
-Vx €A P(x) <+ Ix € A-P(x).

proof: —=¥x(x € A — P(x)).

Ix—(x € A— P(x)).

Ix—(x ¢ AV P(x)).
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Equivalences involving quantifiers

dx € A P(x) is defined as Ix(x € AA P(x)).
Vx € A P(x) is defined as Vx(x € A — P(x)).
-Vx €A P(x) <+ Ix € A-P(x).

proof: —=¥x(x € A — P(x)).

Ix—(x € A— P(x)).

Ix—(x ¢ AV P(x)).

Ix(x € AN —P(x)).

S. Choi (KAIST) Logic and set theory October 7, 2012 16/26



Equivalences involving quantifiers

dx € A P(x) is defined as Ix(x € AA P(x)).
Vx € A P(x) is defined as Vx(x € A — P(x)).
-Vx €A P(x) <+ Ix € A-P(x).

proof: —=¥x(x € A — P(x)).

Ix—(x € A— P(x)).

Ix—(x ¢ AV P(x)).

Ix(x € AN —P(x)).

dx € A=P(x).
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Equivalences involving quantifiers

dx € A P(x) is defined as Ix(x € AA P(x)).
Vx € A P(x) is defined as Vx(x € A — P(x)).
-Vx €A P(x) <+ Ix € A-P(x).

proof: —=¥x(x € A — P(x)).

Ix—(x € A— P(x)).

Ix—(x ¢ AV P(x)).

Ix(x € AN —P(x)).

dx € A=P(x).

These are all equivalent statements
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).

=} F = = DA
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).
@ proof: —3x(x € AA P(x)).

o F = = DA
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).
@ proof: —3x(x € AA P(x)).
@ Vx—(x € AN P(x)).

=} F = = DA
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).
@ proof: —3x(x € AA P(x)).

@ Vx—(x € AN P(x)).

@ Vx(x ¢ AV —P(x)).

[m] = -

DA
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).
@ proof: —3x(x € AA P(x)).

@ Vx—(x € AN P(x)).

@ Vx(x ¢ AV —P(x)).

@ Vx(x € A— —P(x).
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).
@ proof: —3x(x € AA P(x)).

@ Vx—(x € AN P(x)).

@ Vx(x ¢ AV —P(x)).

@ Vx(x € A— —P(x).

@ Vx € A-P(x).
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Equivalences involving quantifiers

@ -Ix € A P(x) + Vx € A-P(x).

@ proof: —3x(x € AA P(x)).

@ Vx—(x € AN P(x)).

@ Vx(x ¢ AV —P(x)).

@ Vx(x € A— —P(x).

@ Vx € A-P(x).

@ These are all equivalent statements

S. Choi (KAIST) Logic and set theory October 7, 2012 17/26



Indexed sets

@ Let / be the set of indices i =1,2,3, ...

=} F = = DA
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Indexed sets

@ Let / be the set of indices i =1,2,3, ...
@ p=2,p=3 p3=5,...

=} F = = DA
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Indexed sets

@ Let / be the set of indices i =1,2,3, ...
@ p=2,p=3 p3=5,...

@ {p1,p2,...} = {pili € I} is another set, called, an indexed set. (Actually
this is an axiom)
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Indexed sets

@ Let / be the set of indices i =1,2,3, ...
@ p=2,p=3 p3=5,...

@ {p1,p2,...} = {pili € I} is another set, called, an indexed set. (Actually
this is an axiom)

@ In fact / could be any set.
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Indexed sets

@ Let / be the set of indices i = 1,2,3, ...
@ p=2,p=8p3=5,.

@ {p1,p2,...} = {pi|i € I} is another set, called, an indexed set. (Actually
this is an axiom)

@ Infact / could be any set.
e {nP|ne N}, {nP|ne Z}.
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Indexed sets

@ Let / be the set of indices i = 1,2,3, ...
@ p=2,p=8p3=5,.

@ {p1,p2,...} = {pi|i € I} is another set, called, an indexed set. (Actually
this is an axiom)

@ Infact / could be any set.
e {nP|ne N}, {nP|ne Z}.
o {Vx|x € Q}

S. Choi (KAIST) Logic and set theory October 7, 2012 18/26



Family of sets

@ A set whose elements are sets is said to be a family of sets.
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Family of sets

@ A set whose elements are sets is said to be a family of sets.
@ We can also write {A;|i € I} for A; a set and / an index set.
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Family of sets

@ A set whose elements are sets is said to be a family of sets.
@ We can also write {A;|i € I} for A; a set and / an index set.

o F={{H{{}1L {1}
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Family of sets

@ A set whose elements are sets is said to be a family of sets.
@ We can also write {A;|i € I} for A; a set and [ an index set.

o F={{3{{}1L{{}

@ Given a set A, the power set is defined: P(A) = {x|x C A}.
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Family of sets

@ A set whose elements are sets is said to be a family of sets.
@ We can also write {A;|i € I} for A; a set and [ an index set.

o F={{3{{}1L{{}

@ Given a set A, the power set is defined: P(A) = {x|x C A}.
@ x € P(A)is equivalentto x C Aandto Vy(y € x — y € A).
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The power set

@ P(A) C P(B). Analysis

o F = = DA
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The power set

@ P(A) C P(B). Analysis
@ Vx(x € P(A) — x € P(B)).

=} F = = DA
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The power set

@ P(A) C P(B). Analysis
@ Vx(x € P(A) — x € P(B)).

o Vx((Vy(yex=yeA)—= (Vy(y e x—=yeB))).
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The power set

@ P(A) C P(B). Analysis

@ Vx(x € P(A) — x € P(B)).

o Vx((Vy(y ex—=yecA)— (Vy(y e x—yehB)).
e If AcC B, thenis P(A) C P(B)?
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The power set

@ P(A) C P(B). Analysis

@ Vx(x € P(A) — x € P(B)).

o Vx((Vy(y ex—=yecA)— (Vy(y e x—yehB)).

e If AcC B, thenis P(A) C P(B)?

@ To check this what should we do? Use our inference rules....
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).

o F = = DA
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

=} F = = DA
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

@ 2:Vy(yea—yecAH.

=} F = = DA
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

@ 2:Vy(yea—yecAH.
e3:bca—-beA

[m] = -
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

@ 2:Vy(yea—yecAH.
@3:bca—becA
@4:bcA—becB.
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

@ 2:Vy(yea—yecAH.
@3 bea—-beA
@4:bcA—beB.
@eb5:bca—+beB.
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

@ 2:Vy(yea—yecAH.

@e3:beca—bcA

@4:bcA—beB.

@5 bca—beB.

@ 6.:Vy(yea—yeB).
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More operations on sets

@ ACBEVYX((Vy(y ex —yecA)— (Vy(y e x—yeh)).
e 1.¥x(x e A— x € B). A.

@ 2:Vy(yea—yecAH.

@e3:beca—bcA

@4:bcA—beB.

@5 bca—beB.

@ 6.:Vy(yea—yeB).

07 (VWyea—yecA)—->Vy(yea—yecB).26
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More operations on sets

@ ACBEVX((Vy(y e x > y € A)) = (Vy(y € x — y € B))).
o 1.Vx(xe A—xe€ B). A

@ 2:Vy(yea—-yeAH.

@3 bca—bcA

@e4:bcA—-beB.

@5 bca—becB.

@ 6.:Vy(yea—yeB).

7. (Wy(yea—ycA)—-Vy(yeca—yeB). 26

0 8. Vx((Vy(yex—yeA)—>Vy(yea—yceB)).
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More operations on sets

o Vx((Vy(yex—yecA)—(Vy(yex—yeB)FACB.

o F = = DA
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More operations on sets

o Vx((Vy(yex—yecA)—(Vy(yex—yeB)FACB.
o 1.Vx((VWy(yex—yeA)— (Vy(yex—yeB))A

=} F = = DA
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More operations on sets

o Vx((Vy(yex—yecA)—(Vy(yex—yeB)FACB.
o 1.Vx((VWy(yex—yeA)— (Vy(yex—yeB))A
@ 2:acAH.
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More operations on sets

o Vx((Vy(yex—yecA)—(Vy(yex—yeB)FACB.
o 1. Vx((Vy(yex —yeA)— (Vy(yex—yeB))A.

@ 2:acAH.

@ 3.:: a€ {a}. H (used as a hypothesis)
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More operations on sets

o Vx((Vy(yex—yecA)—(Vy(yex—yeB)FACB.
o 1. Vx((Vy(yex —yeA)— (Vy(yex—yeB))A.

@ 2:acAH.
@ 3.:: a€ {a}. H (used as a hypothesis)
@ 4:acA
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More operations on sets

o Vx((Vy(yex—yecA)—(Vy(yex—yeB)FACB.
o 1. Vx((Vy(yex —yeA)— (Vy(yex—yeB))A.

@ 2:acAH.
@ 3.:: a€ {a}. H (used as a hypothesis)
@ 4:acA

e 5:ac{al vacA 34

S. Choi (KAIST) Logic and set theory October 7, 2012 22/26



More operations on sets

o Vx((Vy(yex—yeA)— (Vy(yex—-yeB)FACB.
o 1. Yx((Vy(yex—yeA)— (VW(yex—yeB))A.

@ 2:acAH.
@ 3.:: a€ {a}. H (used as a hypothesis)
@ 4.:acA

@5.:ac{a} vacA 34
°6.:(Vy(yel{al »yecA)—(Wwye{al »yeB)
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More operations on sets

Vx(Vy(yex—-yeA)—(Vy(yex—yeB)FACB.
1.Y((Vy(yex >y eA)— (Vy(yex—yeB))A.
2:ac AH.

3.:: a€ {a}. H (used as a hypothesis)

4.::acA

b.ae{a} »acA 34

6..(Vy(ye{al »yecA)— (Wwye{al »yeB)

°
(*)
°
°
°
(*]
°
@ 7:(ace{a} vacA)—(ac{a} —»aecB).
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More operations on sets

Vx(Vy(yex—-yeA)—(Vy(yex—yeB)FACB.
1.Y((Vy(yex >y eA)— (Vy(yex—yeB))A.
2:ac AH.

3.:: a€ {a}. H (used as a hypothesis)

4.::acA

b.ae{a} »acA 34

°6.:(Vy(yel{al »yecA)—(Wwye{al »yeB)

@ 7:(ace{a} vacA)—(ac{a} —»aecB).

@ 8:ac{al »aeB.
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More operations on sets

o Vx((Vy(yex—yeA)— (Vy(yex—-yeB)FACB.
o 1. Yx((Vy(yex—yeA)— (VW(yex—yeB))A.

@ 2:acAH.

@ 3.:: a€ {a}. H (used as a hypothesis)

@ 4:acA

@5.:ac{a} vacA 34

°6.:(Vy(yel{al »yecA)—(Wwye{al »yeB)

@ 7:(ace{a} vacA)—(ac{a} —»aecB).

@ 8:ac{al »aeB.

@ 9.: a € {a} (True statement)
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More operations on sets

Vx(Vy(yex—-yeA)—(Vy(yex—yeB)FACB.
1.Y((Vy(yex >y eA)— (Vy(yex—yeB))A.
2:ac AH.

3.:: a€ {a}. H (used as a hypothesis)

4.:acA

b.ae{a} »acA 34

°6.:(Vy(yel{al »yecA)—(Wwye{al »yeB)
@ 7:(ace{a} vacA)—(ac{a} —»aecB).

@ 8:ac{al »aeB.

@ 9.: a € {a} (True statement)

@ 9.:acB
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More operations on sets

Vx(Vy(yex—-yeA)—(Vy(yex—yeB)FACB.
1.Y((Vy(yex >y eA)— (Vy(yex—yeB))A.
2:ac AH.

3.:: a€ {a}. H (used as a hypothesis)

4.:acA

b.ae{a} »acA 34

°6.:(Vy(yel{al »yecA)—(Wwye{al »yeB)
@ 7:(ace{a} vacA)—(ac{a} —»aecB).

@ 8:ac{al »aeB.

@ 9.: a € {a} (True statement)

@ 9.:acB

@ 10.acA—acB.
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@ F = {Cs|s € S} afamily of sets.
=] F = = DA



More operations on sets

@ F = {Cs|s € S} a family of sets.

@ Define |J F as the set of elements in at least one element of F.
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More operations on sets

@ F = {Cs|s € S} afamily of sets.
@ Define |J F as the set of elements in at least one element of F.
o UF={xF3AAc FAxeA)}={x]3Ac F(x € A)}.
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More operations on sets

@ F = {Cs|s € S} a family of sets.

@ Define | J F as the set of elements in at least one element of F.
o UF={x|3AAe FAx e A} ={x|3Ae F(x € A)}.

@ Define () F as the set of common elements of elements of F.
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More operations on sets

@ F = {Cs|s € S} a family of sets.

@ Define | J F as the set of elements in at least one element of F.
o UF={x|3AAe FAx e A} ={x|3Ae F(x € A)}.
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@ Define () F as the set of common elements of elements of F.
o NF={x|VA(Ae F = x € A)} = {x|[VA € F(x € A)}.
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More operations on sets

Example

@ x € P(UF). Analysis:

e x CUF.
evVy(yex—yelUF).

o Vy(y e x »3Ae F(y € A)).
@ Provethat x ¢ F - x € P(UF).

u]
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Example

@ x € P(UF). Analysis:

xCcUF.

Vy(yex —yelUF).

Vy(y € x — 3A € F(y € A)).
Prove that x € F - x € P(UF).
xe FEVy(y e x —3Ac F(y € A)).
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2.:aexH.
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More operations on sets

Example

@ x € P(UF)F x e F. s this valid?
@ Try to use refutation tree test.
@ xeP(UF). x¢F.

1 Vy(y e x —3Ae F(y € A)).
2 x ¢ F. negation first.
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Example

@ x € P(UF)HF x € F. Is this valid?
@ Try to use refutation tree test.
@ xe P(UF). x¢F.

1 Vy(y e x —3Ae F(y € A)).
2 x¢F.
3aex—3AeFlacA).

1 Vy(y € x = 3A e F(y € A)).

1 Vy(y e x —3Ae F(y € A)).
2 x ¢ F. negation first.

1 Vy(y e x —3Ae F(y € A)). 2 x¢ F.
2 x¢F. 4 (i) a ¢ x open 4(ii) check
3 checkac x — JAe Flac A). JA(ae ANAEF)
4 (yad x4(i)3A@ac ANAC F). 5 (i) a€ Ao
6 (i) Ap € F.
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More operations on sets

@ How do one obtain a counter-example? x ¢ F and a ¢ x.
o F={{1,2},{1,3}}. x={1,2,3}. a=4.
o F={{1,2},{1,8}}. x={1,2,3}. a=3.ac {1,3}. {1,3} e ~.
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