1 Introduction
About this lecture

e Ordered pairs and Cartesian products
e Relations

e More about relations

e Ordering relations

e Closures

e Equivalence relations

e Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.
html and the moodle page http://moodle.kaist.ac.kr

e Grading and so on in the moodle. Ask questions in moodle.

Some helpful references
e Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
e http://plato.stanford.edu/contents.html has much resource.

e Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

2 Ordering relations
Ordering relations

e Arelation R C A x A is antisymmetric if Vo € AVy € A((xRy ANyRx) — y =

e Ris a partial order on A if it is reflexive, transitive and antisymmetric.

e Ris afotal order on A if it is a partial order and Vo € AVy € A(zRy V yRx).

Example
e A={1,2} and B = P(A).
e The subset relation is a partial order but not a total order.
o D={(z,y) € ZT x Z"|xdivides y}.
o G={(z,y) e RxRlz >y}



Smallest element

Definition 1. Let R be a partial order onaset A. Let B C Aand b € B.
o bis called a smallest element of B if Vo € B(bRx).
o bis R-minimal if -3z € B(xRb A x # b).

e Which is a stronger concept?

Example

o L ={(z,y) € R x Rlz < y} whichis a total order on R. B = {z € R|z > 7}.
C={zeR|z>T}

L-minimal ? L-smallest?

Z* with divisibility relation. B = {3,4,5,6,7,8,9}. R-minimal? R-smallest?

S={(z,y) e PZT)x P(Z")|z Cy}. F={x € P(ZT)|2€ X N3 € X}.

R-minimal? R-smallest?

Theorem 2. Let R be a partial order on A. B C A.
o [f B has a smallest element, then the smallest element is unique.

e Suppose that b is a smallest element of B. Then b is minimal element of B and
the unique minimal element of b.

o [f R is a total order and b is a minimal element of B, then b is the smallest
element of B. (not proved)

Proof of 1

[ ]
Given Goal

Ib(Ve € B(bRz)) 3oVa(bRzx)

Given Goal
Vx € B(bpRx) Vx(cRx) — c=bg

Given Goal
Va € B(bgRx) ¢ =bg
Vz(cRx)
CRbQ, boRC



Proof of 2

e Divide goal. b is minimal and b is unique minimal.

[ ]
Given Goal

b(Vz € B(bRz)) —3x € B(xRbAz #D)

Given Goal
(Vz € B(bRz)) Vx € B-(xRbAx #Db)

Given Goal
(Vx € B(bRz)) Va € B(zRb— x =)

Given Goal
(Vz € B(bRz)) z==1b
r € B,xRb

Proof of 2 continued

e Divide goal. b is minimal and b is unique minimal.

[ ]
Given Goal

b(Vz € B(bRx)) Vce B((Vx € B(xRc — x =c¢)) = b=c¢)

Given Goal
b(Vz € B(bRx)) b=c
ceB

Vz € B(xRe — x = ¢))

Given Goal
b(Vx € B(bRx)) b=c
ceB

Vz € B(xRec — x = ¢))
bRc, hence b = ¢

e - Largestelements: B C A. Vx € B(zRb)
— maximal element: =3z € B(xRb A b # ).

Definition3. - B C A. ais alower bound of B if Vx € B(aRx).
— a € Ais an upper bound of B if Vo € B(xRa).



— Let U be the set of upper bounds for B and let L be the set of lower bounds
for B.

— If U has a smallest element, this smallest element is said to be the least
upper bound (lub, supremum).

— If L has a greatest element, this element is said to be the greatest lower
bound (glb, infimum).

e These elements may not equal the smallest, minimal (greatest, maximal) element
of B...

Real number system (Hrbaceck 4.5)

e An ordered set is dense if it has at least two elements and if for all a,b € X,
a < bimplies there exists x € X such thata < < b.

e Let (P, <) be a dense linearly ordered field. P is complete if every nonempty
subset S bounded above has a supremum.
Real number system (Hrbaceck 4.5)
[ ]

Theorem 4. Let (P, <) be dense linearly ordered set without endpoints. Then
there exists a complete linearly ordered set (C,<') unique up to isomorphism
such that

— P C C. order preserved
— PisdenseinC.

— C does not have endpoints.
e The real number system is the completion of Q.

e The real number system is unique complete linearly ordered set without end-
points that has a countable subset dense in it.

e Conway, Knuth invented surreal numbers...

3 Closures

Reflexive closures

Definition 5. e Let R be a relation. The reflexive closure of R is the smallest set
S C A x Asuchthat R C S and S is reflexive.

e In other words, S is such that R C S, S is reflexive, for every T' C A x A and if
R C T and T is reflexive, then S C T'.



Theorem 6. (4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof. Let S = RUi4. Properties 1, 2 are obvious. For 3, R C T'. Since T is reflexive,
iaCT.Thus S = RUiy CT. O

Definition 7. Let R be a relation on A.
o Risirreflexive if Vo € A((z,z) ¢ R).
e Ris a strict partial order if it is irreflexive and transitive.

e R is a strict total order if it is a strict partial order and satisfies Vo € AVy €
A(zRyVyRz VvV x =y).

The reflexive closure of a strict partial order (resp. strict total order) is a partial order
(resp. total order).

Definition 8. Let R be a relation on A. The symmetric closure of R is the smallest set
S C A x Asuchthat R C S and S is symmetric. This is equivalent to.

e RCS.
e S is symmetric.

e Forany T C A x Aand R C T and T is symmetric imply that S C T'.

Definition 9. Let R be a relation on A. The transitive closure of R is the smallest set
S C A x Asuchthat R C S and S is transitive. This is equivalent to.

e RCS.

e S is transtive.

e Forany T C A x Aand R C T and T is transitive imply that S C T.
Example 10. See Figures 1,2,3 in pages 197-198 in HTP.

Theorems

Theorem 11. Suppose that R is a relation on A. Then R has a symmetric closure.
Proof. hint: RUR™!. O
Theorem 12. Suppose that R is a relation on A. Then R has a transitive closure.

Proof. hint: Take intersections of all transitive relations containing R. U



4 Equivalence relations

Equivalence relations

Definition 13. Suppose that R is a relation on A. If R is a reflexive, symmetric, and
transtive, then R is an equivalence relation.

A equivalence relation « a partition of a set.

Definition 14. Suppose that R is an equivalence relation on A. Then the equivalence
class of x wrt. Ris [z]gr = {y € AlyRx}.

The set of all equivalence class is denoted A/R (A mod R)
A/R :={[z]r|lr € A} ={X C A|Fx € A(X = [z]r)}

Equivalence relations
Theorem 15. (4.6.5) Suppose that R is an equivalence relation on A. Then for
o Forallz € A, x € [z]g.

e Forallz € Aandy € A, y € [z]r < [y|r = [7]R-

proof

e 1.z € A. Then xRz by reflexivity. Thus x € [z]g.

e 2. — part:
Given Goal
y€lzlr [Ylr=[z]r
[ )
Given Goal
y€lzlr Vz(z € [ylr < 2 € [z]R)
e part I:
Given Goal
y€lzlr Vz(z € [ylr — 2 € [z]R)
proof
[ )
Given Goal
y € [z]|r zRzx
z e [y]RvyR'Tv ZRy
e part 2:
Given Goal
y € [zlr Vz(z € [z]r — 2 € [y]r)
e omit



Equivalence relation — Partition

Theorem 16. Suppose that R is an equivalence relation on a set A. Then A/R is a
partition of A.

Proof. e To show A/R is a partition of A, we show that | JA/R = A, A/R is
pairwise disjoint, and no element of A/ R is empty.

e For the first item, | JA/R C A. We show A C |JA/R. Suppose z € A. Then
x € [z]g. Thusz € | JA/R.

e The pairwise disjointness follows from what?

e Suppose X € A/R. Then X = [z]r D « and hence is not empty.

Equivalence relation < Partition

Theorem 17. (4.6.6) Let A be a set. F a partition of A. Then there exists an equiva-
lence relation R on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma 18. (4.6.7) A a set. F a partition of A> Let R = |y (X x X). Then R is
an equivalence relation on A.

1. We call R the equivalence relation induced by F.
2. The proof is that we verify the three properties of equivalence relations.

3. We prove the transitivity: Ry, yRz. (z,y) € X x X and (y,z) € Y x Y. Then
XNY >y. Thus, X =Y. Thus, (z,2) € X x X and zRz.

Lemma 19. (4.6.8) Let A be a set. F a partition of A. Let R be the equivalence
relation determined by F. Suppose X € F and x € X. Then [z]r = X.

[ ]
Given Goal

XeF,zeX [zlpCX,X Clx]r

e part I:
Given Goal
XeFrxeX yelX
y € [z]r
[ )
Given Goal
XeF,xrxeX ye X

yRxor (y,z) €Y x Y, Thus,Y = X

e part 2: omit



Proof of Theorem 4.6.6

o Let R=xcr X x X.
e We show that A/R = F. Thatis, X € A/R — X € F.

e part I: —.
Given Goal
XeA/R XeF

Given Goal
X =[z]g,z € A XeF
r €Y forsomeY € F
Y = [x]g by 4.6.8
Y=X

Proof of Theorem 4.6.6

e part2: «—.
Given Goal
XeF X eA/R
X#DreX
X =[z]p € A/Rby4.6.8



