
1 Introduction
About this lecture

• Ordered pairs and Cartesian products

• Relations

• More about relations

• Ordering relations

• Closures

• Equivalence relations

• Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.
html and the moodle page http://moodle.kaist.ac.kr

• Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

• Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

• http://plato.stanford.edu/contents.html has much resource.

• Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

2 Ordering relations
Ordering relations

• A relation R ⊂ A×A is antisymmetric if ∀x ∈ A∀y ∈ A((xRy∧ yRx)→ y =
x).

• R is a partial order on A if it is reflexive, transitive and antisymmetric.

• R is a total order on A if it is a partial order and ∀x ∈ A∀y ∈ A(xRy ∨ yRx).

Example

• A = {1, 2} and B = P (A).

• The subset relation is a partial order but not a total order.

• D = {(x, y) ∈ Z+ × Z+|xdivides y}.

• G = {(x, y) ∈ R× R|x ≥ y}.



Smallest element

Definition 1. Let R be a partial order on a set A. Let B ⊂ A and b ∈ B.

• b is called a smallest element of B if ∀x ∈ B(bRx).

• b is R-minimal if ¬∃x ∈ B(xRb ∧ x 6= b).

• Which is a stronger concept?

Example

• L = {(x, y) ∈ R× R|x ≤ y} which is a total order on R. B = {x ∈ R|x ≥ 7}.
C = {x ∈ R|x > 7}.

• L-minimal ? L-smallest?

• Z+ with divisibility relation. B = {3, 4, 5, 6, 7, 8, 9}. R-minimal? R-smallest?

• S = {(x, y) ∈ P (Z+)× P (Z+)|x ⊂ y}. F = {x ∈ P (Z+)|2 ∈ X ∧ 3 ∈ X}.

• R-minimal? R-smallest?

Theorem 2. Let R be a partial order on A. B ⊂ A.

• If B has a smallest element, then the smallest element is unique.

• Suppose that b is a smallest element of B. Then b is minimal element of B and
the unique minimal element of b.

• If R is a total order and b is a minimal element of B, then b is the smallest
element of B. (not proved)

Proof of 1

•
Given Goal

∃b(∀x ∈ B(bRx)) ∃!b∀x(bRx)

•
Given Goal

∀x ∈ B(b0Rx) ∀x(cRx)→ c = b0

•
Given Goal

∀x ∈ B(b0Rx) c = b0

∀x(cRx)
cRb0, b0Rc

2



Proof of 2

• Divide goal. b is minimal and b is unique minimal.

•
Given Goal

b(∀x ∈ B(bRx)) ¬∃x ∈ B(xRb ∧ x 6= b)

•
Given Goal

(∀x ∈ B(bRx)) ∀x ∈ B¬(xRb ∧ x 6= b)

•
Given Goal

(∀x ∈ B(bRx)) ∀x ∈ B(xRb→ x = b)

•
Given Goal

(∀x ∈ B(bRx)) x = b
x ∈ B, xRb

Proof of 2 continued

• Divide goal. b is minimal and b is unique minimal.

•
Given Goal

b(∀x ∈ B(bRx)) ∀c ∈ B((∀x ∈ B(xRc→ x = c))→ b = c)

•
Given Goal

b(∀x ∈ B(bRx)) b = c
c ∈ B

∀x ∈ B(xRc→ x = c))

•
Given Goal

b(∀x ∈ B(bRx)) b = c
c ∈ B

∀x ∈ B(xRc→ x = c))
bRc, hence b = c

• – Largest elements: B ⊂ A. ∀x ∈ B(xRb)

– maximal element: ¬∃x ∈ B(xRb ∧ b 6= x).

•

Definition 3. – B ⊂ A. a is a lower bound of B if ∀x ∈ B(aRx).

– a ∈ A is an upper bound of B if ∀x ∈ B(xRa).
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– Let U be the set of upper bounds for B and let L be the set of lower bounds
for B.

– If U has a smallest element, this smallest element is said to be the least
upper bound (lub, supremum).

– If L has a greatest element, this element is said to be the greatest lower
bound (glb, infimum).

• These elements may not equal the smallest, minimal (greatest, maximal) element
of B...

Real number system (Hrbaceck 4.5)

• An ordered set is dense if it has at least two elements and if for all a, b ∈ X ,
a < b implies there exists x ∈ X such that a < x < b.

• Let (P,<) be a dense linearly ordered field. P is complete if every nonempty
subset S bounded above has a supremum.

Real number system (Hrbaceck 4.5)

•

Theorem 4. Let (P,<) be dense linearly ordered set without endpoints. Then
there exists a complete linearly ordered set (C, <′) unique up to isomorphism
such that

– P ⊂ C. order preserved

– P is dense in C.

– C does not have endpoints.

• The real number system is the completion of Q.

• The real number system is unique complete linearly ordered set without end-
points that has a countable subset dense in it.

• Conway, Knuth invented surreal numbers...

3 Closures
Reflexive closures

Definition 5. • Let R be a relation. The reflexive closure of R is the smallest set
S ⊂ A×A such that R ⊂ S and S is reflexive.

• In other words, S is such that R ⊂ S, S is reflexive, for every T ⊂ A×A and if
R ⊂ T and T is reflexive, then S ⊂ T .

4



Theorem 6. (4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof. Let S = R∪iA. Properties 1, 2 are obvious. For 3, R ⊂ T . Since T is reflexive,
iA ⊂ T . Thus S = R ∪ iA ⊂ T .

Definition 7. Let R be a relation on A.

• R is irreflexive if ∀x ∈ A((x, x) 6∈ R).

• R is a strict partial order if it is irreflexive and transitive.

• R is a strict total order if it is a strict partial order and satisfies ∀x ∈ A∀y ∈
A(xRy ∨ yRx ∨ x = y).

The reflexive closure of a strict partial order (resp. strict total order) is a partial order
(resp. total order).

Definition 8. Let R be a relation on A. The symmetric closure of R is the smallest set
S ⊂ A×A such that R ⊂ S and S is symmetric. This is equivalent to.

• R ⊂ S.

• S is symmetric.

• For any T ⊂ A×A and R ⊂ T and T is symmetric imply that S ⊂ T .

Definition 9. Let R be a relation on A. The transitive closure of R is the smallest set
S ⊂ A×A such that R ⊂ S and S is transitive. This is equivalent to.

• R ⊂ S.

• S is transtive.

• For any T ⊂ A×A and R ⊂ T and T is transitive imply that S ⊂ T .

Example 10. See Figures 1,2,3 in pages 197-198 in HTP.

Theorems

Theorem 11. Suppose that R is a relation on A. Then R has a symmetric closure.

Proof. hint: R ∪R−1.

Theorem 12. Suppose that R is a relation on A. Then R has a transitive closure.

Proof. hint: Take intersections of all transitive relations containing R.
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4 Equivalence relations
Equivalence relations
Definition 13. Suppose that R is a relation on A. If R is a reflexive, symmetric, and
transtive, then R is an equivalence relation.

A equivalence relation↔ a partition of a set.

Definition 14. Suppose that R is an equivalence relation on A. Then the equivalence
class of x w.r.t. R is [x]R = {y ∈ A|yRx}.

The set of all equivalence class is denoted A/R (A mod R )

A/R := {[x]R|x ∈ A} = {X ⊂ A|∃x ∈ A(X = [x]R)}

Equivalence relations
Theorem 15. (4.6.5) Suppose that R is an equivalence relation on A. Then for

• For all x ∈ A, x ∈ [x]R.

• For all x ∈ A and y ∈ A, y ∈ [x]R ↔ [y]R = [x]R.

proof

• 1. x ∈ A. Then xRx by reflexivity. Thus x ∈ [x]R.

• 2. → part:
Given Goal

y ∈ [x]R [y]R = [x]R
•

Given Goal
y ∈ [x]R ∀z(z ∈ [y]R ↔ z ∈ [x]R)

• part 1:
Given Goal

y ∈ [x]R ∀z(z ∈ [y]R → z ∈ [x]R)

proof

•
Given Goal

y ∈ [x]R zRx
z ∈ [y]R, yRx, zRy

• part 2:
Given Goal

y ∈ [x]R ∀z(z ∈ [x]R → z ∈ [y]R)

• omit
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Equivalence relation→ Partition

Theorem 16. Suppose that R is an equivalence relation on a set A. Then A/R is a
partition of A.

Proof. • To show A/R is a partition of A, we show that
⋃

A/R = A, A/R is
pairwise disjoint, and no element of A/R is empty.

• For the first item,
⋃

A/R ⊂ A. We show A ⊂
⋃

A/R. Suppose x ∈ A. Then
x ∈ [x]R. Thus x ∈

⋃
A/R.

• The pairwise disjointness follows from what?

• Suppose X ∈ A/R. Then X = [x]R 3 x and hence is not empty.

Equivalence relation← Partition

Theorem 17. (4.6.6) Let A be a set. F a partition of A. Then there exists an equiva-
lence relation R on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma 18. (4.6.7) A a set. F a partition of A> Let R =
⋃

X∈F (X ×X). Then R is
an equivalence relation on A.

1. We call R the equivalence relation induced by F .

2. The proof is that we verify the three properties of equivalence relations.

3. We prove the transitivity: xRy, yRz. (x, y) ∈ X×X and (y, z) ∈ Y ×Y . Then
X ∩ Y 3 y. Thus, X = Y . Thus, (x, z) ∈ X ×X and xRz.

Lemma 19. (4.6.8) Let A be a set. F a partition of A. Let R be the equivalence
relation determined by F . Suppose X ∈ F and x ∈ X . Then [x]R = X .

•
Given Goal

X ∈ F , x ∈ X [x]R ⊂ X,X ⊂ [x]R

• part 1:
Given Goal

X ∈ F , x ∈ X y ∈ X
y ∈ [x]R

•
Given Goal

X ∈ F , x ∈ X y ∈ X
yRx or (y, x) ∈ Y × Y, Thus, Y = X

• part 2: omit
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Proof of Theorem 4.6.6

• Let R =
⋃

X∈F X ×X .

• We show that A/R = F . That is, X ∈ A/R↔ X ∈ F .

• part 1: →.
Given Goal

X ∈ A/R X ∈ F

•
Given Goal

X = [x]R, x ∈ A X ∈ F
x ∈ Y for some Y ∈ F

Y = [x]R by 4.6.8
Y = X

Proof of Theorem 4.6.6

• part 2: ←.
Given Goal
X ∈ F X ∈ A/R

X 6= ∅, x ∈ X
X = [x]R ∈ A/R by 4.6.8
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