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> A discrete affine group I' acting properly on E is either solvable or is free of rank
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A discrete affine group I' acting properly on E is either solvable or is free of rank
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I is a proper affine free group of rank > 2.
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Main results

Margulis space-times

v

Isom™ (E) the group of Lorentzian isometries on the flat Lorentzian space E.

v

A discrete affine group I' acting properly on E is either solvable or is free of rank
> 2.

> [ is a proper affine free group of rank > 2.
> Assume for convenience £(I') C SO(2,1)°. T is a proper affine deformation.

Assume L(I) is a free group of rank g,g > 2 in SO(2,1)° acting freely and
discretely on H?2.
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Part 0: Introduction

Main results

Real projective structures

> A real projective structure on a manifold is given by a maximal atlas of charts to
RP™ n > 1, with transition maps in PGL(n+ 1,R).

> Suppose that X is a real projective surface with holonomy in the image of £(I) in
PSO(2,1).

> A parabolic annulus in ¥ is a properly embedded compact annulus with a
parabolic holonomy.
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Main Theorem

Theorem 2.1

Suppose that I is a proper affine free group of rank g, g > 2, with parabolics and
linear parts in SO(2,1)°. Then
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Main Theorem
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Suppose that I is a proper affine free group of rank g, g > 2, with parabolics and
linear parts in SO(2,1)°. Then

» E/T is diffeomorphic to the interior of a compact handlebody of genus g.
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Main Theorem

Theorem 2.1

Suppose that I is a proper affine free group of rank g, g > 2, with parabolics and
linear parts in SO(2,1)°. Then

» E/T is diffeomorphic to the interior of a compact handlebody of genus g.

> Moreover, it is the interior of a real projective 3-manifold M with a totally
geodesic real projective surface as boundary.
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Main Theorem

Theorem 2.1
Suppose that I is a proper affine free group of rank g,g > 2, with parabolics and
linear parts in SO(2,1)°. Then
» E/T is diffeomorphic to the interior of a compact handlebody of genus g.
> Moreover, it is the interior of a real projective 3-manifold M with a totally
geodesic real projective surface as boundary.

» M deformation retracts to a compact handlebody obtained by removing a union
of finitely many solid-torus-end-neighborhoods.

Remark 1

The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the
tameness without parabolics was also solved by Choi-Goldman and this group.
Crooked plane conjecture for nonparabolic case was solved by this group also.
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= Main results

> We conjecture that the Margulis space-time with parabolics deforms immediately
to one without parbolics. However, this requires result of

Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
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> We conjecture that the Margulis space-time with parabolics deforms immediately
to one without parbolics. However, this requires result of

Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
imply the relative compactification.

> The Crooked-plane conjecture is also claimed by DGK [5] and this should also
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> We conjecture that the Margulis space-time with parabolics deforms immediately
to one without parbolics. However, this requires result of
Goldman-Labourie-Margulis-Minsky [8] which they have not written up.

> The Crooked-plane conjecture is also claimed by DGK [5] and this should also
imply the relative compactification.

> The main advantage of our approach is to see the 3-dimensional picture such as
axes of transformations and globally hyperbolic subspaces bounded by Cauchy
hypersurfaces. Also, relative compactification is easy to see.
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L Main results

» We conjecture that the Margulis space-time with parabolics deforms immediately
to one without parbolics. However, this requires result of
Goldman-Labourie-Margulis-Minsky [8] which they have not written up.

> The Crooked-plane conjecture is also claimed by DGK [5] and this should also
imply the relative compactification.

> The main advantage of our approach is to see the 3-dimensional picture such as
axes of transformations and globally hyperbolic subspaces bounded by Cauchy
hypersurfaces. Also, relative compactification is easy to see.

> Also, these show that every flat complete Lorentz manifold of any dimension is
tame. (Goldman-Labourie [6])
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Preliminary

Real projective geometry of Margulis space-times

» Define

S(V) := V\ {0}/ ~+ where x ~4 y iff x = sy for s € Ry.
> ((v) denotes the equivalence class of v.

There is a double cover S(V) — P(V) with the antipodal map A : S(V) — S(V)
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Preliminary

Real projective geometry of Margulis space-times

» Define

S(V) := V\ {0}/ ~+ where x ~4 y iff x = sy for s € Ry.
> ((v) denotes the equivalence class of v.

There is a double cover S(V) — P(V) with the antipodal map A : S(V) — S(V)

> SL4 (V) acts on S(V) effectively and transitively, and is Aut(S(V)).
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L Preliminary

Real projective geometry of Margulis space-times

> Define
S(V) := V\ {0}/ ~+ where x ~4 y iff x = sy for s € Ry.
There is a double cover S(V) — P(V) with the antipodal map A : S(V) — S(V).
(v) denotes the equivalence class of v.
SL+ (V) acts on S(V) effectively and transitively, and is Aut(S(V)).
E equals an open hemisphere in S3 = S(R*) by sending
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(x1,x2,x3) to (1, x1,x2,x3) for x1,x2,x3 € R.
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Real projective geometry of Margulis space-times

> Define
S(V) := V\ {0}/ ~+ where x ~4 y iff x = sy for s € Ry.
There is a double cover S(V) — P(V) with the antipodal map A : S(V) — S(V).
(v) denotes the equivalence class of v.
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» OE = OH is a great 2-sphere S given by xg = 0.
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Preliminary

Real projective geometry of Margulis space-times

> Define
S(V) := V\ {0}/ ~+ where x ~4 y iff x = sy for s € Ry.

There is a double cover S(V) — P(V) with the antipodal map A : S(V) — S(V).
(v) denotes the equivalence class of v.

SL+ (V) acts on S(V) effectively and transitively, and is Aut(S(V)).

» E equals an open hemisphere in S* = S(R*) by sending

v

v

(x1,x2,x3) to (1, x1,x2,x3) for x1,x2,x3 € R.

» OE = OH is a great 2-sphere S given by xg = 0.
> S=S;US=USp.
> Sy is the Klein model of the hyperbolic plane.
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Hausdorff convergences

:
» S = S(R*) has Fubini-Study metric d.

» The Hausdorff distance between two compact sets A and B is

dH(A, B) = |nf{5|6 >0,BC Nd’(;(A),A C Nd’(;(B)}.
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Part 0: Introduction

Preliminary

Hausdorff convergences

» S = S(R*) has Fubini-Study metric d.

» The Hausdorff distance between two compact sets A and B is

dH(A, B) = inf{5|6 >0,BC Nd,(g(A),A C Nd’(;(B)}.

Proposition 2.1 (see Benedetti-Petronio)
A sequence {A;} of compact sets converges to A in the Hausdorff topology if and only
if

» If there is a sequence {x,-j}, xj; € A,-j, where Xj; = X for ij — oo, then x € A.

> If x € A, then there exists a sequence {x;}, x; € A;, such that x; — x.
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[ Proper parabolic actions
Linear parabolic action

> A linear endomorphism N : V — V is a skew-adjoint endomorphism of V if

B(NX, Y) = —B(X, NY)
> We classify skew-adjoint linear parabolic transformations.
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Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Linear parabolic action

> A linear endomorphism N : V — V is a skew-adjoint endomorphism of V if
B(Nx,y) = —B(x, Ny).

> We classify skew-adjoint linear parabolic transformations.

Corollary 3.1

Given a skew-adjoint endomorphism N : V. — V. Then there exists a coordinate
system given by a, b, c satisfying
> » B(a,b) =0=B(b,c),B(a,c) = —1,
> ¢ = N(b),b = N(a), and
> b is a unit spacelike vector, c € KerN is casual null, and a is null.
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L Proper parabolic actions

Linear parabolic action

> A linear endomorphism N : V — V is a skew-adjoint endomorphism of V if
B(Nx,y) = —B(x, Ny).

> We classify skew-adjoint linear parabolic transformations.

Corollary 3.1

Given a skew-adjoint endomorphism N : V. — V. Then there exists a coordinate
system given by a, b, c satisfying
> » B(a,b) =0=B(b,c),B(a,c) = —1,
» ¢ = N(b),b = N(a), and
> b is a unit spacelike vector, c € KerN is casual null, and a is null.
> The coordinate system is is canonical for a skew-symmetric nilpotent
endomorphism N with respect toB: V x V — R.
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[ Proper parabolic actions
Proper affine parabolic action

> Let v be an affine transformation with skew-adjoint parabolic linear part exp(N).
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Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Proper affine parabolic action

> Let v be an affine transformation with skew-adjoint parabolic linear part exp(N).

> Using the frame given as above and translating, =y lies in a one-parameter group

01 0 O 1t t?/2 ut’/6
0 01 0 0 1 t t2/2
V(t) :=expt 00 0 u = 0 0 1 H;Lt/ (3.1)
0 0 0 O 0 0 0 1
for p € R.

u]
]
I
ul
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L part 1. P f a parabolic cycl
- Proper parabolic actions
Proper affine parabolic action

:
> This one-parameter subgroup {W(t), t € R} leaves invariant the two polynomials

Fa(x,y,z) = 2% — 2py and F3(x,y,z) = 2° — 3uyz + 34i°x,
and the diffeomorphism F(x,y, z) := (F3(x,y, z), F2(x,y, 2),z)

(3.2)
Fo\ll(t)oF_1 t(x,y,2) = (x,y,z + pt).

(3.3)
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- Proper parabolic actions

Proper affine parabolic action

> This one-parameter subgroup {W(t), t € R} leaves invariant the two polynomials
Fa(x,y,z) = 2% — 2py and F3(x,y,z) = 2° — 3uyz + 34i°x,

(3.2)
and the diffeomorphism F(x,y, z) := (F3(x,y, z), F2(x,y, 2),z)

FoW(t)o F7 i (x,y,2) = (x,y,z + pt) . (33)
> All the orbits are twisted cubic curves.

5b o ow s

Figure: A number of orbits drawn horizontally.
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Proper parabolic actions

Margulis invariants

> Let [ be a proper affine deformation of a free group.
> For non-parabolic v € I' \ {I}, we define
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Proper parabolic actions

Margulis invariants

> Let [ be a proper affine deformation of a free group.
> For non-parabolic v € I' \ {I}, we define

> x4 () as an eigenvector of £(7) in the casual null directions with eigenvalue > 1,
> x_ () as an eigenvector of L(+y) in the casual null direction with eigenvalue < 1, and
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Part 1: Proper action of a parabolic cyclic group
Proper parabolic actions

Margulis invariants

> Let [ be a proper affine deformation of a free group.
> For non-parabolic v € I' \ {I}, we define
> x4 () as an eigenvector of £(7) in the casual null directions with eigenvalue > 1,

> x_ () as an eigenvector of L(+y) in the casual null direction with eigenvalue < 1, and
> xo(7) as the spacelike positive eigenvector of L() of eigenvalue 1 given by

xo(y) = x- () xx:(7)
lIx— () > x4 (Nl
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Part 1: Proper action of a parabolic cyclic group
Proper parabolic actions

Margulis invariants

> Let [ be a proper affine deformation of a free group.
> For non-parabolic v € I' \ {I}, we define

> x4 () as an eigenvector of £(7) in the casual null directions with eigenvalue > 1,
> x_ () as an eigenvector of L(+y) in the casual null direction with eigenvalue < 1, and
> xo(7) as the spacelike positive eigenvector of L() of eigenvalue 1 given by

xo(y) = x—(7) X x4 (7)

lIx—(7) x xs (NI
» The Margulis invariant is given

a(y) = B(v(x) = x,%0(7)), x € E

(3.4)
independent of the choice of x.




Margulis space-time with parabolics
(-

Part 1: Proper action of a parabolic cyclic group
Proper parabolic actions

Charette-Drumm invariants cd(-)
Definition 3.1

if

An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g
> {v,x, L(g)x} is positively oriented when

> x is any null or timelike vector which is not an eigenvector of g.
Definition 3.2
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Proper parabolic actions

Charette-Drumm invariants cd(-)

Definition 3.1

An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g
if

> {v,x, L(g)x} is positively oriented when

> x is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

> Let F(L(g)) be the eigensubspace of L(g) of eigenvalue 1.
> Define &(v) : F(L(v)) — R by

&(7)() =B(y(x) = x,),x € E.
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Proper parabolic actions

Charette-Drumm invariants cd(-)

Definition 3.1

An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g
if

> {v,x, L(g)x} is positively oriented when

> x is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

> Let F(L(g)) be the eigensubspace of L(g) of eigenvalue 1.
> Define &(v) : F(L(v)) — R by

&(7)() =B(y(x) = x,),x € E.

> cd(vy) > 0 if &(v) is positive on positive eigenvectors in F(L(~)) \ {0} ([1]).



Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

L~ Proper parabolic actions
Charette-Drumm invariants cd(-)

Definition 3.1

An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g
if
> {v,x, L(g)x} is positively oriented when

> x is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

> Let F(L(g)) be the eigensubspace of L(g) of eigenvalue 1.
> Define &(v) : F(L(v)) — R by

a(7)() =B(v(x) = x,),x € E.

> cd(vy) > 0 if &(v) is positive on positive eigenvectors in F(L(~)) \ {0} ([1]).

Lemma 3.1

w > 0 if and only if v = &1 has a positive Charette-Drumm invariant. Implying (v)
acts properly on E.
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= Parabolic ruled surfaces and transverse foliations
Constructing transversal foliations

» W(t): E — E is generated by a vector field

¢ 1= yOx + 20y + 10:
with the square of the Lorentzian norm ||¢]|> = 22 — 2uy
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= Parabolic ruled surfaces and transverse foliations
Constructing transversal foliations

» W(t): E — E is generated by a vector field

¢ = yOx + z0y + oz
with the square of the Lorentzian norm ||¢]|> = 22 — 2uy.
» Invariants of gt are

Fa(x,y,z) = 2% — 2py and F3(x,y,z) = 2° — 3uyz + 3p°x

N
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L Parabolic ruled surfaces and transverse foliations
Constructing transversal foliations

» W(t): E — E is generated by a vector field

¢ = yOx + z0y + oz
with the square of the Lorentzian norm ||¢]|> = 22 — 2uy.
» Invariants of gt are

Fa(x,y,z) = 722 —2py and Fi(x,y,z) = 2% — 3uyz + 3u%x
> We define W(t,s) = gt(/(s)) so that

I(s) = (0, y0,0) + s(a,0, ¢) = (sa, yo, sc), #(I(s)) = (yo, sc, p)-
¢ is never parallel to (a,0,c) for £ <

a
c
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Figure: Two parabolic ruled surfaces. See [3].
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

> Assume 0 < k1 < ko < min{1, %
R1p

> Let f:(0,1) — R be a strictly increasing analytic function satisfying

Nipar < F(r) < rkop

Vi—r2
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

> Assume 0 < k1 < ko < min{1, %

> Let f:(0,1) — R be a strictly increasing analytic function satisfying
K1

< f(r) < kap .
V1-—r2? r) V1-—r2
> Let Hf be the space of compact segments u passing E with the following

antipodal set £_ C CI(S—-),

> Ou in the horodisk & C CI(S,) containing (1,0, 0) in the boundary and in the
)
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

> Assume 0 < k1 < ko < min{1, %

> Let f:(0,1) — R be a strictly increasing analytic function satisfying

r
rip———= < f(r) < kop—.

V1—r2 r) 1—1r2
> Let Hf be the space of compact segments u passing E with the following

> Ou in the horodisk & C CI(S,) containing (1,0, 0) in the boundary and in the
antipodal set £_ C CI(S—-),

> uNEis equivalent under g* for some t to I(s) given by Ir .(s) = (sa, y¢(r), sc), s € R,
where

ye(r) == f(r),a=r,c=+/1—1r2,re (0,1).
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Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

v

Assume 0 < k1 < k2 < min{1, % .

v

Let f: (0,1) — R be a strictly increasing analytic function satisfying

> < f(r) < rap

r
K1 p———
V1—r

Let Hs be the space of compact segments u passing E with the following

> Ou in the horodisk & C CI(S,) containing (1,0, 0) in the boundary and in the
antipodal set £_ C CI(S—-),
> uNEis equivalent under g* for some t to I(s) given by Ir .(s) = (sa, y¢(r), sc), s € R,

where
ye(r) == f(r),a=r,c=+/1—1r2,re (0,1).

For r € (0,1), let S¢ . denote the parabolic ruled surface given by

U &t s).

t,s€R

1—r2

v

v
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= Parabolic ruled surfaces and transverse foliations
:
Remark 2

Define Ds ,,+ for t € R denote the surface

U

gt(/f,r(s))~
sER,relry,1)
Theorem 3.2

Let ry € (0,1). Then the following hold:
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Remark 2
Define Ds ,,+ for t € R denote the surface

U &ttsn.

sE€R,re(r,1)

Theorem 3.2
Let ry € (0,1). Then the following hold:

> St for r € [, 1) are properly embedded leaves of a foliation S”f’ 1o of the region
Rf 1y, closed in E, bounded by St ,, where g* acts on.
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L Parabolic ruled surfaces and transverse foliations

Remark 2
Define Df ,, : for t € R denote the surface

U &ttsn.

sER,re(r,1)

Theorem 3.2
Let rg € (0,1). Then the following hold:
> S¢  for r € [y, 1) are properly embedded leaves of a foliation 5;7,0 of the region
R¢ 1y, closed in E, bounded by S ., where gt acts on.
> {Df r,t,t € R} is the set of properly embedded leaves of a foliation ﬁf,,o of Rt ry
by disks meeting S¢ . for each r, ro < r < 1, transversally.

2 gtO(Df,rg,t) = Dt rg,t+1o-
> D¢ o.er N Dsoye = O fort,t', t #t.
> CI(Dr,ry,t) NSy is given as a geodesic ending at the parabolic fixed point of g.
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Parabolic ruled surfaces and transverse foliations

Figure: Three reddish leaves of foliation Sfy,o and three bluish leaves of D¢,y Where
f(r)=2—L—= and = 1. See [4].
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Part 1: Proper action of a parabolic cyclic group

Tameness of the parabolic quotient spaces

Tameness of E/(v)

Definition 3.3

The quotient Rf , /{(g) is homeomorphic to a solid torus and is foliated by St
induced by S'f,,o and Dr ,, induced by ﬁfyro. The leaves of S, are annuli of form

S¢,r/{(g), and the leaves of Df ,; are the embedded images of Ds ,, : for t € R. The
embedded image of Rr  /(g) in E/T are foliated also.
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Part 1: Proper action of a parabolic cyclic group

L Tameness of the parabolic quotient spaces

Tameness of E/(v)

Definition 3.3

The quotient Rf , /{(g) is homeomorphic to a solid torus and is foliated by St
induced by <S~'f,,0 and Ds , induced by ﬁf,,o. The leaves of S, are annuli of form
S¢,r/(g), and the leaves of Df ,; are the embedded images of Ds , ; for t € R. The
embedded image of Rr  /(g) in E/T are foliated also.

Theorem 3.4 (Parabolic Tameness)

Let ~v be a parabolic affine transformation with a positive Charette-Drumm invariant.
Then E/(v) is homeomorphic to a solid torus.
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L Tameness of the parabolic quotient spaces

Tameness of E/(7)

Definition 3.3

The quotient Ry ., /(g) is homeomorphic to a solid torus and is foliated by S
induced by S~fyr0 and Ds , induced by ﬁfy,o. The leaves of S, are annuli of form
S¢,r/(g), and the leaves of Df ,; are the embedded images of Ds , ; for t € R. The
embedded image of Rr , /(g) in E/T are foliated also.

Theorem 3.4 (Parabolic Tameness)

Let v be a parabolic affine transformation with a positive Charette-Drumm invariant.
Then E/(v) is homeomorphic to a solid torus.

Remark 3

We may use a ~-invariant foliation of E by crooked planes from the results of
Charette-Kim [2]. We will give a topological proof later.



Margulis space-time with parabolics
Part 2: Geometric estimations and convergences

LGoldman-Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

> Let I be as above with parabolics so that M = E/T is a Margulis space-time

> Define V as a quotient budle of V := US; x R2%! under the diagonal action

v(x,v) = (Dy(x), L(7)(v)),x € US;,v e R>L y eT.
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Part 2: Geometric estimations and convergences

L Goldman- Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

v

Let I be as above with parabolics so that M = E/T is a Margulis space-time.

v

Define V as a quotient budle of V := US; x R2! under the diagonal action

1(x,v) = (Dy(x), L(7)(v)), x € US4, v e R*! v €T

v

The vector bundle V has a fiberwise Riemannian metric ||-||g,,., Where I acts as
isometries.

Define ¥ := St x R?1 and the bundle ¥ := ‘/7/I' with the action

v

Y(x,v) = (Dy(x), L(Y)(v)), x € S,v € Ry €T.
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Part 2: Geometric estimations and convergences

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

» Let I be as above with parabolics so that M = E/T is a Margulis space-time.

» Define V as a quotient budle of V.= US; x R%! under the diagonal action
Y(x,v) = (DY(x), £(7)(v)), x € USy,v € R* v €T.

> The vector bundle V has a fiberwise Riemannian metric |-||gp,., Where I' acts as
isometries.

> Define 7 = St x R?1 and the bundle ¥ := ‘17/I' with the action
70, v) = (DY(x), L(1) (W), x € S, v € R¥ v €T
> Let &; : US; — US. denote the geodesic flow on US defined by the hyperbolic

metric.

> Let
Do, : US; x R>! — US, x R>!

denote the flow acting trivially on the second factor and as the geodesic flow on
US;.
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L Goldman- Labourie-Margulis decomposition and estimations of cocycles

Decomposition of V

Given ((x),u) € US4,

in the direction of u, and

of the geodesic /((k)),j) C S+.

> Define /((x)),u) C S to be the oriented complete geodesic passing through ((x))
> Define v, (i), = 1/v2j + 1/v/2k and v_ ((x).j) = —1/v/2j + 1/v/2k endpoints
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Part 2: Geometric estimations and convergences

L Goldman- Labourie-Margulis decomposition and estimations of cocycles

Decomposition of V

Given ((x),u) € US4,

> Define /((x)),u) C S to be the oriented complete geodesic passing through ((x))
in the direction of u, and

> Define v, (i), = 1/v2j + 1/v/2k and v_ ((x).j) = —1/v/2j + 1/v/2k endpoints
of the geodesic /((k)),j) C S+.

> Define v ((x),u) @nd V_ ((x),u) respectively to be the images of v ((x)j) and
V_ ((k),j) under L(g) if

£(g) (k) = x and Dg(j) = u.
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Part 2: Geometric estimations and convergences

Goldman-Labourie-Margulis decomposition and estimations of cocycles

We give as a basis

V—(()u) X Vi (()u)

) H"—,((X),U) XV ((x),u)

Vi, ((x).0)> V= ((x)0) > VO,((x).u) © (4.1)

for the fiber over ((x)) where X is the Lorentzian crossproduct.

> Let Vo be the 1-dimensional subbundle of US; x R2! containing Vo, ((x),u)-
> Let V. be the 1-dimensional subbundle of US; x R2! containing Vi (1))

> Let V_ be the 1-dimensional subbundle of US; x R%! containing V_ ((x),u)-
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LGoldman-Labourie-Margulis decomposition and estimations of cocycles
Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow ®; acts on V, and \{ spli_'_cs into tbree
®-invariant line bundles V1, V_ and Vg, which are images of V4, V_ and V.
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Part 2: Geometric estimations and convergences

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow ®; acts on V, and V splits into three
®-invariant line bundles V1, V_ and Vg, which are images of V4, V_ and V.

Our choice of [|[|ge, Shows that D®; acts as uniform contraction in V. as
t — 00, —00, i.e.,
1D (v )lgper = exp(—t) [V lgper for vi € Vo,

[D®:(v—)llber
[D®+(vo)llgber = IVollgher for vo € Vo. (42)

1%

exp(t) V= ||gpe, for v— € V_,
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L Goldman- Labourie-Margulis decomposition and estimations of cocycles

Digram for bundles

The frames on US; and on US. The circles bound horodisks covering the cusp
closed geodesics pass through.

neighborhoods below. The compact set . is a some small compact set where the

=
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|—Transla':ions vectors and orbits of a proper affine deformations
de Rham isomorphism

» The ¥ -valued forms are differential forms with values in the fiber spaces of 7.

» The ¥-valued forms on Sy are simply the R%!-valued forms on S;.

DA 25740
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L Translations vectors and orbits of a proper affine deformations
:
de Rham isomorphism

» The ¥ -valued forms are differential forms with values in the fiber spaces of 7.

» The ¥-valued forms on Sy are simply the R%!-valued forms on S
> The group I' acts by

T (v@dx) = L) Hv) @d(xon),yET.
> Write g as g(x) = Agx +bg, x €E. Then b: I — R?! given by

(4.3)
g +— by for every g
is a cocycle representing an element of

H(m1(S), R*Y) = HY(S,¥)
using the de Rham isomorphism.
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Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

de Rham isomorphism

» The ¥ -valued forms are differential forms with values in the fiber spaces of 7.

» The ¥-valued forms on Sy are simply the R%!-valued forms on S;.

> The group I' acts by
Y (v®dx) = L(y) " (v) @ d(x 0 ),y €T. (4.3)
> Write g as g(x) = Agx +bg, x €E. Then b: I — R?! given by
g +— by for every g
is a cocycle representing an element of
H(m1(S), R*1) = H(S, ¥)

using the de Rham isomorphism.

> Let 1 denote the smooth #-valued 1-form on S representing the cocycle b in the
de-Rham sense.
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LTranslations vectors and orbits of a proper affine deformations
Estimating cocycle values b,

> We obtain

by = /[o,tg] Do ((xg, ug), 1)~ (77 (

do((xg, ug), t)
curve representing g.

))
dt
where ®((xg,ug), [0, tg]) for x; € % and a unit vector ug at xg, covers a closed

(4.4)

26/40
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LTranslations vectors and orbits of a proper affine deformations
Estimating cocycle values b,

> We obtain

by = /[O,tg] Do ((xg, ug), 1)~ (77 (

dP((xg, ug), t)
curve representing g.

dt 4.4
W) e
where ®((xg,ug), [0, tg]) for x; € % and a unit vector ug at xg, covers a closed
> Define

where w = +, —, 0.

(), u) = NG (A((x) , ),

(4.5)

26/40
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LPart 2: Geometric estimations and convergences
L Translations vectors and orbits of a proper affine deformations
:
Estimating cocycle values b,

> We obtain

by = /[O,tg] Do ((xg, ug), 1)~ (77 (

dP((xg, ug), t)
curve representing g.

dt 4.4
W) e
where ®((xg,ug), [0, tg]) for x; € % and a unit vector ug at xg, covers a closed
> Define

where w = +, —, 0.

(), u) = NG (A((x) , ),
> We define invariants:

(4.5)
by i=lg_(bg) = /

DO ((xg, ug), £) - (ﬁw (
[0,tg]

dq)((Xg, Ug), t)

0.9 g, (1
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point corresponding to Hj.

» Let H; CS4,j=1,2,..., denote the horodisks Let p; denote the parabolic fixed

DA 27/40
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Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

» Let H; CS4,j=1,2,..., denote the horodisks Let p; denote the parabolic fixed
point corresponding to Hj.

» Each H; has coordinates x;, y; from the upper half-space model where p; becomes
o0, and H; is given by y; > 1.

» We may choose the 1-form 7 in the same cohomology class so that 7/, its lift to
S+, is on any cusp neighborhood:

pjdx; where (p;) = p;. (4.7)

u]
]
I

ul
i
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Part 2: Geometric estimations and convergences

L Translations vectors and orbits of a proper affine deformations

» Let H; CS4,j=1,2,..., denote the horodisks Let p; denote the parabolic fixed
point corresponding to Hj.

» Each H; has coordinates x;, y; from the upper half-space model where p; becomes
oo, and H; is given by y; > 1.

» We may choose the 1-form 7 in the same cohomology class so that 7/, its lift to
S+, is on any cusp neighborhood:

pjdx; where (p;) = p;. (4.7)

Theorem 4.1

Assume the positivity of Margulis and Charette-Drumm invariants, and
L(T) C SO(2,1)°. For every sequence {gi} with I(gi) — oo of elements of [ ¢, the
following hold :

> |bgllg — oo
> {|lbg;—|lg} < C for a uniform constant C > 0 independent of i.
> d(((bg); Cl(¢a;)) — 0.
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Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

Corollary 4.2

Let M be a Margulis space-time E/I" with holonomy group T with parabolics. Let
K C E be a compact subset. Let y € Si, and let v; € I be a sequence such that
Yi(¥) = Yoo for yoo € 8S4. Then for every € > 0, there exists Iy such that

'yi(K) C Nd,e(Cl(Cyoo)) fori > Ip.

Equivalently, any sequence {~(z;)|zi € K} accumulates only to C1({y.. ).
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Part 3: Topology of 3-manifolds

Finding the fundamental domain

Exhaustions

Proposition 5.1 (Scott-Tucker)

Let E/T be a Margulis space-time with parabolics. Then E/T has a sequence of
handlebodies
M(l) C M(2) Ceea C M(,-) C M(i+1) (@
so that My = U:l M(iy. They have the following properties:
> m1(Mg)) — m1(M) is an isomorphism.
> The inverse image M(i) of My in M is connected.
> w1 (M) — m1(M) is surjective.

» for each compact subset K C E/T, there exists an integer | so that for i > I,
K C M(,)
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Part 3: Topology of 3-manifolds

Finding the fundamental domain

Boundedness in the parabolic sectors

Proposition 5.2

Let IA?j denote the subdomain of the parabolic region R; bounded by two
crooked-boundary disks D1 and D, whose closures contains C1((p;) for a parabolic
fixed point p; with the parabolic generator ~y; acting on R;. Assume that

DiNR;,i =1,2, is a ruled disk of the form of Theorem 3. 2 5uppose that Dy N R; and

(D1) N R; for § =1 or —1 bounds a region in R; containing R
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Part 3: Topology of 3-manifolds
L Finding the fundamental domain

Boundedness in the parabolic sectors

Proposition 5.2

Let IA?J denote the subdomain of the parabolic region R; bounded by two
crooked-boundary disks D1 and D, whose closures contains C1((p;) for a parabolic
fixed point p; with the parabolic generator ~y; acting on R;. Assume that
D, NR;,i=1,2, is a ruled disk of the form of Theorem 3. 2 Suppose that Dy N R; and
v (D1) N R; for § =1 or —1 bounds a region in R; containing R

> Then Rj N M(J) is also compact for each j.

> Furthermore, we may assume that
/\N/’(_/)QRJ‘:(Z) forj=1,...,¢c

by choosing R; sufficiently far away.
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Part 3: Topology of 3-manifolds
L Finding the fundamental domain

Boundedness in the parabolic sectors

Proposition 5.2

Let IA?J denote the subdomain of the parabolic region R; bounded by two
crooked-boundary disks D1 and D, whose closures contains C1((p;) for a parabolic
fixed point p; with the parabolic generator ~y; acting on R;. Assume that

D, NR;,i=1,2, is a ruled disk of the form of Theorem 3. 2 Suppose that Dy N R; and

v (D1) N R; for § =1 or —1 bounds a region in R; containing R

> Then Rj N M(J) is also compact for each j.

> Furthermore, we may assume that
/\N/’(_/)QRJ‘:(Z) forj=1,...,¢c

by choosing R; sufficiently far away.

Proof

We use exhaustions and Corollary 4.2
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Part 3: Topology of 3-manifolds

Finding the fundamental domain

Choices of the candidate fundamental domain F bounded by almost
crooked-disks D;

Now going to E/I" with exhaustions My as above.

Lemma 5.3

We can choose the mutually disjoint collection D; C E of properly embedded open
disks and a tubular neighborhood T; C CI(D;) of dD; for each j, j=1,...,2g, that
form a matching set {T;|j =1,...,2g} for a collection Sy of generators of I'. Finally,

aD; = d;j U A(d;) U Uxeadj Cl(¢x) for a lift dj of dj.
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Part 3: Topology of 3-manifolds

L Finding the fundamental domain

Choices of the candidate fundamental domain F bounded by almost
crooked-disks D;

Now going to E/I" with exhaustions My as above.

Lemma 5.3

We can choose the mutually disjoint collection D; C E of properly embedded open
disks and a tubular neighborhood T; C CI(D;) of OD;j for each j, j=1,...,2g, that
form a matching set {T;|j =1,...,2g} for a collection Sg of generators of I'. Finally,

aD; = d;j U A(d;) U Uxeadj Cl(¢x) for a lift dj of dj.

» Here, of course, the disk collection is not a matching set under Sp.

» Dj, j=1,2,...,2g, bound a region F closed in E with a compact closure in
CI(E), a finite-sided polytope in the topological sense.
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[ Finding the fundamental domain
Figures

I

<
= _'

N

(a) M(J) meeting with disks

(b) The fundamental domain bounded by disks

DA
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[

Finding the fundamental domain

Tameness

Proposition 5.4 (Boundedness of M) in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk D, D N M( J) is
compact, i.e., bounded, and has only finitely many components.
Proof.

Follows from Cor 4.2 and Prop. 5.2.
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Part 3: Topology of 3-manifolds

Finding the fundamental domain

Tameness
Proposition 5.4 (Boundedness of M) in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk D, D N M( J) is
compact, i.e., bounded, and has only finitely many components.

Proof.
Follows from Cor 4.2 and Prop. 5.2. O

Definition 5.1
We modify T; so that it is disjoint from the compact set in D;

D; N (D)),
(k,N#(.j+g) mod 2g

which we call an unintended set.
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L Finding the fundamental domain

Tameness
Proposition 5.4 (Boundedness of M) in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk D, D N A7I( J) is
compact, i.e., bounded, and has only finitely many components.

Proof.
Follows from Cor 4.2 and Prop. 5.2. O

Definition 5.1
We modify T; so that it is disjoint from the compact set in D;

U Dj N (D),
(k,)#(.j+g) mod 2g
which we call an unintended set.

» Now we consider Kj be the set
2g
U U (Dj N (D))
J=1(k,N#(j.j+g) mod 2g

which is a compact set by the finiteness. We also add to'Kj the following sets:
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|—Finding the fundamental domain

By Proposition 5.1, we choose My in our exhaustion sequence of M so that

:
My D Na,e (Ko)
for an e-neighborhood, € > 0.

(5.1)
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Part 3: Topology of 3-manifolds

Finding the fundamental domain

By Proposition 5.1, we choose My in our exhaustion sequence of M so that

M(J) D Ny (Ko) (5.1)
for an e-neighborhood, € > 0.

Lemma 5.5

M(J) N D; is a union of finitely many compact planar surfaces. Then Ufil DiN 8M(J)
maps to a union of embedded simple closed circles in M) bounding immersed
planar surfaces in M.
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Part 3: Topology of 3-manifolds
L Finding the fundamental domain

By Proposition 5.1, we choose M,y in our exhaustion sequence of M so that

M(J) D) Nd’€ (Ko) (5.1)

for an e-neighborhood, € > 0.

Lemma 5.5

My N'D;j is a union of finitely many compact planar surfaces. Then U,‘zil DiN GM(J)
maps to a union of embedded simple closed circles in 8M(J) bounding immersed
planar surfaces in M.

Proof.

This follows since they form the boundary of a fundamental region of BM(J). O
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L Finding the fundamental domain

By Proposition 5.1, we choose M,y in our exhaustion sequence of M so that

M(J) D) Nd,e (Ko) (5.1)

for an e-neighborhood, € > 0.

Lemma 5.5

A7I(J) N D; is a union of finitely many compact planar surfaces. Then U,‘zil DiN BM(J)
maps to a union of embedded simple closed circles in 8M(J) bounding immersed
planar surfaces in M.

Proof.
This follows since they form the boundary of a fundamental region of BM(J). O

Proposition 5.6 (Outside Tameness)
Let M denote E/T where L(I') C SO(2,1)°. Let F be the domain bounded by
Ufil Dj. Then F\ M(J) is a fundamental domain of M\ My, and M is tame.

Furthermore, U?i Di \ M(J) embeds to a disjoint union of properly embedded
surfaces in M.
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|—Part 3: Topology of 3-manifolds
LFinding the fundamental domain

» By Dehn’s lemma applied to My, each component of D; N oM, ) bounds a disk
mapping to a mutually disjoint collection of embedded disks in M.

(
» We modify D; by replacing each component of D; N M(J) with lifts of these disks.
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Part 3: Topology of 3-manifolds

Finding the fundamental domain

v

By Dehn'’s lemma applied to M, each component of D; N 8M(J) bounds a disk
mapping to a mutually disjoint collection of embedded disks in M.

v

We modify D; by replacing each component of D; N M(J) with lifts of these disks.

We define A; := U
for x. We define

v

e (x, an open domain where (x is the accordant semi-circle
i

¥ :=S,US_U U(A; Ua; U A(ai))
i€eT

for the antipodal map A.

v

Y = i/l’ is a real projective surface, i.e., the ideal RP2-surface.
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Part 3: Topology of 3-manifolds
L Finding the fundamental domain

> By Dehn’s lemma applied to M), each component of D; N 8A7I(J) bounds a disk
mapping to a mutually disjoint collection of embedded disks in M.

» We modify D; by replacing each component of D; N M(J) with lifts of these disks.

» We define A; := U
for x. We define

e Cx, an open domain where (x is the accordant semi-circle
i

$.=S,US_uU U(A,— Ua U A(ar))
ieT
for the antipodal map A.
Y = i/r is a real projective surface, i.e., the ideal RP2-surface.

v

Proposition 5.7

There exists a fundamental domain R closed in E bounded by D;, j =1,...,2g.
Moreover, CI(R) N (E U X) is the fundamental domain of a manifold (EU ¥)/T" with
boundary ¥. Here, R and CI(R) are 3-cells, and E/T is homeomorphic to the interior
of a handlebody of genus g.
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LPart 3: Topology of 3-manifolds
[

:

Relative compactification

Let P = Ufyer Ui:l,---,mo ~¥(Pi), and let P := (P1U---UPmy) N R.
Proposition 5.8

We can choose the sufficiently far away parabolic regions

Piy.- s Pmy
meeting R nicely so that they are disjoint in E. Then the following hold :
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Relative compactification

Let P = Uver UI,:1 o ¥(P;), and let Pr = (P1U---UPmy) NR.

Proposition 5.8
We can choose the sufficiently far away parabolic regions
Piy.- s Pmy

meeting R nicely so that they are disjoint in E. Then the following hold :
> v(P;) N R # 0 if and only if v(P;) meets R nicely, and v(P;) = P;j for some j.
> R meets only P1,...,Pm, among all images v(P;) fory €, r=1,...,mo.
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L Relative compactification

Let P = Uwer Ui:l ceesmo (Pi), and let Pr := (P1U---UPmy) N R.

Proposition 5.8
We can choose the sufficiently far away parabolic regions
Piy.- s Pmy

meeting R nicely so that they are disjoint in E. Then the following hold:
> v(Pi) "R # O if and only if v(P;) meets R nicely, and ~v(P;) = P; for some j.
> R meets only P1,...,Pm, among all images v(P;) fory €, r=1,..., mo.
> Moreover, for every pair v,n € T,

¥(Pi) N n(Pk) =0 or v(P;) = n(Pk), js k= 1,..., mo.
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L

Relative compactification

> First, we recall our bordifying surface:

$0:=S; US_ U U(A,- U aj U A(ay)).

i€eT
» ¥ :=50/Fand N := (EUS)/T.

DA 37/40
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Part 3: Topology of 3-manifolds

Relative compactification

> First, we recall our bordifying surface:

$0:=S; US_ U U(A,- U aj U A(ay)).
i€T

v

¥ :=5%/Tand N := (EUX)/T.

We define P to be a union of mutually disjoint parabolic regions of form ~(P;)
foryerl,i=1,...,mg.

v

v

We take the closure C1(P) of P and take the relative interior P" in the closed
hemisphere H.

Let 9P’ denote AP NE. Then define N/ := EU X\ P'.

v
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Part 3: Topology of 3-manifolds

Relative compactification

v

First, we recall our bordifying surface:

$0:=S; US_ U U(A,- U aj U A(ay)).
i€
¥ =5/ and N := (EUE)/T.
We define P to be a union of mutually disjoint parabolic regions of form ~(P;)
foryerl,i=1,...,mg.
We take the closure C1(P) of P and take the relative interior P" in the closed
hemisphere H.

Let 9P’ denote AP NE. Then define N/ := EU X\ P'.

» T acts properly discontinuously on N’. Thus, N’ := N’/I" is a manifold.

The manifold boundary ON’ of N’ is
(E\P)UP)IT.

Define P = P'/T.
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[

Relative compactification

> Also, On(P") := (8gP’)/T is a union of a finite number of disjoint annuli. N’ is
homeomorphic to (X \ P”) U dnP".

» Recall that the union of facial-disks D;, i
domain R in H.

1,...,2g, bounds the fundamental

i
N
yel
Q
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Relative compactification

> Also, On(P") := (8gP’)/T is a union of a finite number of disjoint annuli. N’ is
homeomorphic to (X \ P”) U dnP".

> Recall that the union of facial-disks D;, i = 1,...,2g, bounds the fundamental
domain R in H.

2g

U CUD)N(EUS\ P')
i=1
bounds a fundamental domain

CI(R)N(EUE\ P').
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Part 3: Topology of 3-manifolds

Relative compactification

> Also, On(P") := (8gP’)/T is a union of a finite number of disjoint annuli. N’ is
homeomorphic to (X \ P”) U dnP".

> Recall that the union of facial-disks D;, i = 1,...,2g, bounds the fundamental
domain R in H.
>
2g
U CUD)N(EUS\ P')

i=1

bounds a fundamental domain
CI(R)N(EUE\ P').

» N/ :=(EUX\ P')/T is compact and is homeomorphic to a handlebody of genus
g by Theorem 5.2 of Hempel [9].

» N deformation retracts to N/ as above since ¢ does not act on any component of
P’
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