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The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Orbifolds

Orbifold structure

By an n-dimensional orbifold, we mean a Hausdorff second countable topological

space with a fine open cover {Ui , i ∈ I} with compatible models (Ũi ,Gi ).

Good orbifold

M/Γ where Γ is a discrete group with a properly discontinuous action.

Real projective structure

A RPn-structure on an orbifold is given by having charts from Ui s to open subsets of

RPn with transition maps in PGL(n + 1,R).

2/23



The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Orbifolds

Orbifold structure

By an n-dimensional orbifold, we mean a Hausdorff second countable topological

space with a fine open cover {Ui , i ∈ I} with compatible models (Ũi ,Gi ).
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The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Projective, affine, and hyperbolic geometry

I RPn = P(Rn+1) = (Rn+1 − {O})/ ∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

I The group of projective automorphisms is PGL(n + 1,R).

I RPn − RPn−1
∞ is an affine space An where the group of projective automorphisms

of An is exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

I R1,n with Lorentzian metric q(~v) := −x2
0 + x1

1 + · · ·+ x2
n .

I The upper part of q = −1 is the model of the hyperbolic n-space Hn.

I The cone q < 0 corresponds to the convex open n-ball in Bn ↪→ An ⊂ RPn

correspond to Hn in a one-to-one manner.

I Isom(Hn) = Aut(Bn) = PO(1, n) ↪→ PGL(n + 1,R).

3/23



The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Projective, affine, and hyperbolic geometry

I RPn = P(Rn+1) = (Rn+1 − {O})/ ∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

I The group of projective automorphisms is PGL(n + 1,R).

I RPn − RPn−1
∞ is an affine space An where the group of projective automorphisms

of An is exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

I R1,n with Lorentzian metric q(~v) := −x2
0 + x1

1 + · · ·+ x2
n .

I The upper part of q = −1 is the model of the hyperbolic n-space Hn.

I The cone q < 0 corresponds to the convex open n-ball in Bn ↪→ An ⊂ RPn

correspond to Hn in a one-to-one manner.

I Isom(Hn) = Aut(Bn) = PO(1, n) ↪→ PGL(n + 1,R).

3/23



The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Projective, affine, and hyperbolic geometry

I RPn = P(Rn+1) = (Rn+1 − {O})/ ∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

I The group of projective automorphisms is PGL(n + 1,R).

I RPn − RPn−1
∞ is an affine space An where the group of projective automorphisms

of An is exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

I R1,n with Lorentzian metric q(~v) := −x2
0 + x1

1 + · · ·+ x2
n .

I The upper part of q = −1 is the model of the hyperbolic n-space Hn.

I The cone q < 0 corresponds to the convex open n-ball in Bn ↪→ An ⊂ RPn

correspond to Hn in a one-to-one manner.

I Isom(Hn) = Aut(Bn) = PO(1, n) ↪→ PGL(n + 1,R).

3/23



The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Projective, affine, and hyperbolic geometry

I RPn = P(Rn+1) = (Rn+1 − {O})/ ∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

I The group of projective automorphisms is PGL(n + 1,R).

I RPn − RPn−1
∞ is an affine space An where the group of projective automorphisms

of An is exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

I R1,n with Lorentzian metric q(~v) := −x2
0 + x1

1 + · · ·+ x2
n .

I The upper part of q = −1 is the model of the hyperbolic n-space Hn.

I The cone q < 0 corresponds to the convex open n-ball in Bn ↪→ An ⊂ RPn

correspond to Hn in a one-to-one manner.

I Isom(Hn) = Aut(Bn) = PO(1, n) ↪→ PGL(n + 1,R).

3/23



The deformation spaces of convex real projective structures

Introduction

Orbifolds and RPn -structures

Real projective structures on orbifolds

An RPn-structure on M/Γ with simply connected M is given by an immersion

D : M → RPn equivariant with respect to a homomorphism h : Γ→ PGL(n + 1,R)

where Γ is the fundamental group of M/Γ.

I The pair (D, h) is only determined up to the action by g ∈ PGL(n + 1,R) given by

g(D, h(·)) = (g ◦ D, gh(·)g−1).

I Conversely, [(D, h)] determines the RPn-structure.
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The deformation spaces of convex real projective structures

Introduction

Deformation spaces and holonomy maps

Deformation spaces of convex RPn-structures

I Given an orbifold S, a convex RPn-structure is given by a diffeomorphism

f : S → Ω/Γ for a convex domain Ω in RPn and Γ a subgroup of PGL(n + 1,R).

I This induces a diffeomorphism D : S̃ → Ω equivariant with respect to

h : π1(S)→ Γ.

I The deformation space CDef(S) of convex RPn-structures

is {(D, h)}/ ∼ where (D, h) ∼ (D′, h′) if there is an isotopy f̃ : S̃ → S̃ such that

D′ = D ◦ f̃ and h′(g) = h(g) for each g ∈ π1(S) or D′ = k ◦ D and h′(·) = kh(·)k−1

for k ∈ PGL(n + 1,R).

I Alternatively, CDef(S) = {f : S → Ω/Γ}/ ∼ where f ∼ g for f : S → Ω/Γ and

g : S → Ω′/Γ′ if there exists a projective diffeomorphism k : Ω/Γ→ Ω′/Γ′ so that

k ◦ f is isotopic to g.
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The deformation spaces of convex real projective structures

Introduction

Deformation spaces and holonomy maps

The hol map: The local homeomorphism property
Ehresmann, Thurston

The closed version is a classical theorem that the holonomy representations locally

parametrize the geometric structures and vice versa. We state the radial end version.

Theorem A

Let O be a closed n-orbifold or noncompact tame with radial or totally geodesic ends.

Then the following map is a local homeomorphism:

hol : Def(E)(O)→ rep(E)(π1(O), PGL(n + 1,R))

in the stable subspace. (note: no convexity condition is needed for this.)

Proof.

This follows as in the compact cases using the bump functions. However, we may need

the bump functions extending to the ends for radial ends. (comments: this would be hard to

generalize for non-R- or T-ends)
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The deformation spaces of convex real projective structures

Introduction

Convexity and convex domains

Convexity.

The openness in Theorem A for closed orbifolds with properly convex real projective

structures was proved by Koszul in 1970s.

Proposition (Basic Convexity)

I An RPn-orbifold is convex if and only if the developing map D sends the universal

cover to a convex open domain in RPn.

I An RPn-orbifold is properly convex if and only if D sends the universal cover to a

properly convex open domain in a compact domain in an affine patch of RPn.

I If a convex RPn-orbifold is not properly convex, then its holonomy is virtually

reducible.
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Introduction

Convexity and convex domains

Benoist’s "maximally complete" results

Benoist in his papers "Convexes divisibles I-IV":

Proposition (Benoist)

Suppose that a discrete subgroup Γ of PGL(n + 1,R) acts properly on a properly

convex n-dimensional open domain Ω so that Ω/Γ is a compact orbifold. Then the

following statements are equivalent.

I Every FI subgroup of Γ has a trivial center.

I Every FI subgroup of Γ is irreducible in PGL(n + 1,R). (or strongly irreducible).

I The Zariski closure of Γ is semisimple.

I Γ does not contain a normal infinite nilpotent subgroup.

I Γ does not contain a normal infinite abelian subgroup.
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Introduction

Convexity and convex domains

Benoist’s result continued

I The group with the above property is said to be the group with trivial virtual center.

I Theorem (Benoist’s Closedness)

Let Γ be a discrete subgroup of PGL(n + 1,R) with a trivial virtual center. Suppose that

a discrete subgroup Γ of PGL(n + 1,R) acts on a properly convex n-dimensional open

domain Ω so that Ω/Γ is a compact orbifold. Then every representation of a

component of Hom(Γ, PGL(n + 1,R)) containing the inclusion representation also acts

on a properly convex n-dimensional open domain cocompactly.
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The deformation spaces of convex real projective structures

Convex RPn -orbifolds with radial or totally geodesic ends

Tillman’s example

S. Tillman’s example
I There is a census of small hyperbolic orbifolds with graph-singularity. (See the paper by D.

Heard, C. Hodgson, B. Martelli, and C. Petronio [2])

I There is a complete hyperbolic structure on the orbifold based on S3 with handcuff singularity

with two points removed. The singularity orders are three.

I There is a one-parameter space of deformations of the structures to RP3-structures as seen

by simple matrix computations.

I More examples due to myself, Ballas, Danciger, Gye-Seon Lee, Greene: Some of these are

properly and strictly convex and irreducible by our theory to be presented.

3

33

Figure: The handcuff graph 10/23
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The deformation spaces of convex real projective structures

Convex RPn -orbifolds with radial or totally geodesic ends

Tillman’s example

End orbifold

I An RPn-orbifold has radial ends if each end has an end neighborhood foliated by

concurrent geodesics for each chart ending at the common point of concurrency.

I Each end has a neighborhood diffeomorphic to a closed orbifold times an open

interval.

I Given an end, there is an end orbifold associated with the end. The radial foliation

has a transversal RPn−1-structure and hence the end orbifold has an induced

RPn−1-structure of one dimension lower.

I The end orbifold is convex if O is convex. If the end orbifold is properly convex,

then we say that the end is a transversely properly convex end.

I Crampon-Marquis arXiv:1202.5442 and Cooper-Long-Tillman arXiv:1109.0585

also studies finite-covolume cases: i.e.; “cusped cases".
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The deformation spaces of convex real projective structures

Convex RPn -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

Open and closed properties

Theorem B

Let O be a noncompact topologically tame n-orbifold with admissible ends satisfying

(IE) and (NA). Then

I In Defi
E,u,ce(O), the subspace CDefE (O) of SPC-structures is open. (SPC means

“stable properly convex”)

I Suppose further that π1(O) contains no nontrivial nilpotent normal subgroup. The

deformation space CDefE,u,ce(O) of SPC-structures on O maps homeomorphic to

a union of components of repi
E,u,ce(π1(O), PGL(n + 1,R)).

I We can drop the superscript i(new result in May 2014)

Here “u” indicates unique fixed point conditions. However it is not essential here.

(Cooper-Long-Tillman are using “flag” condition. ) “ce” means lens or horospherical condition.
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Convex RPn -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

Theorem C

Let O be a strict SPC noncompact topologically tame n-dimensional orbifold with

admissible ends satisfying (IE) and (NA). Suppose that π1(O) has no infinite nilpotent

subgroup as a virtual normal subgroup. Then

I π1(O) is relatively hyperbolic with respect to its end fundamental groups.

I In Defi
E,u,ce(O), the subspace SDefE (O) of strict SPC-structures with respect to

the ends is open.

I The deformation space SDefE,u,ce(O) of strict SPC-structures on O with respect

to the ends maps homeomorphic to a union of components of

repi
E,u,ce(π1(O), PGL(n + 1,R)).

I We can drop the superscript i (new result in May 2014)
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The deformation spaces of convex real projective structures

Convex RPn -orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

Hilbert metrics

I A Hilbert metric on an SPC-structure is defined as a distance metric given by

cross ratios. (We do not assume strictness here.)

I Let Ω be a properly convex domain. Then dΩ(p, q) = log(o, s, q, p) where o and s

are endpoints of the maximal segment in Ω containing p, q.

I This gives us a well-defined Finsler metric.

I Given an SPC-structure on O, there is a Hilbert metric dH on Õ and hence on Õ.

This induces a metric on O.

14/23
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The deformation spaces of convex real projective structures

Convex RPn -orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

Relatively hyperbolicity and strict SPC-structures

I We will use Bowditch’s result to show

Theorem (D)

Let O be a topologically tame strictly SPC-orbifold with admissible ends satisfying (IE)

and (NA). Then π1(O) is relatively hyperbolic with respect to the end groups

π1(E1), ..., π1(Ek ).

I Fact: Suppose that π1(El ), .., π1(Ek ) are hyperbolic for some 0 ≤ l < k , π1(O) is

relatively hyperbolic with respect to π1(E1), . . . , π1(El−1) iff so it is with respect to

π1(E1), . . . , π1(Ek ). (Drutu)
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The SPC-structures and relative hyperbolicity

I Proof: We denote this quotient space bdÕ1/ ∼ by B, a compact metrizable space.

I We will use Theorem 0.1. of Yaman [5]: We show that π1(O) acts on the set B as

a geometrically finite convergence group.

I The group acts properly discontinuously on the set of triples in B.

I An end group Γx for end vertex x is a parabolic subgroup fixing x since the

elements in Γx fixes only the contracted set in B and since there are no essential

annuli.
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I Proof continued: Let p be a point that is not a horospherical endpoint or a

singleton corresponding an lens-shaped end. We show that p is a conical limit

point.

I We find a sequence of holonomy transformations γi and distinct points a, b ∈ ∂X

so that γi (p)→ a and γi (q)→ b for all q ∈ ∂X − {p}. To do this, we draw a line

l(t) from a point of the fundamental domain to p where as t →∞, l(t)→ p in the

compactification.

q'

q

p'

p

l

m

Figure: A shortest geodesic m to a geodesic l .

I
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Converse

We will prove the partial converse to the above Theorem D:

Theorem (E)

Let O be a topologically tame SPC-orbifold with admissible ends satisfying (IE) and

(NA). Suppose that π1(O) is relatively hyperbolic group with respect to the admissible

end groups π1(E1), ..., π1(Ek ) where Ei are horospherical for i = 1, ...,m and

lens-shaped for i = m + 1, ..., k for 0 ≤ m ≤ k.

I Assume that O is SPC. Then O is strictly SPC.

I Let O1 be obtained by removing the concave neighborhoods of hyperbolic ends.

Then if O is SPC, then O1 is strictly SPC.
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Proof.

Suppose not. We obtain a triangle T with ∂T in ∂Õ1.

Lemma

Suppose that O is a topologically tame properly convex n-orbifold with admissible ends

and π1(O) is relatively hyperbolic with respect to its ends. O has no essential tori or

essential annuli. Then every triangle T in Õ with ∂T ⊂ ∂Õ is contained in the closure

of a convex hull of one of its ends.

Proof.

Uses asymptotic cones in Drutu-Sapir’s work.
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Proofs of Theorem B and C

I By Theorem A, we at least have a real projective structures on orbifolds.

I We show that a small change of the structure implies the small change of the

universal covers of the end orbifolds in the Hausdorff metrics.– We can control the

ends.

I We show that the Koszul-Vinberg function can be perturbed to positive definite

functions in the affine suspensions by controlling the ends.– This proves the

openness part of Theorem B.

I For theorem C, we use "Strict SPC iff rel. hyperbolic".

I As we deform a strict SPC structure, we do not change the rel. hyperbolicity.

Thus, strict SPC property is preserved. The openness part of Theorem C is done.
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I We also need to show that the limiting convex real projective structure of a

sequence of SPC-structure is also SPC. We show this by showing that the

universal covers Ωi must converge geometrically to a properly convex domain of

nonempty interior. (up to duality) (Essentially because we have only horospherical

or lens-type ends.)

I Let g1, . . . , gm denote the set of generator of π1(O).

d(hi (gj )(x0), bdΩi ) ≥ C0 for a uniform constant C0 : (1)

dΩi (x0, hi (gj )(x0)) < C. (2)

I We make use of Benzecri’s estimation that there are two fixed balls Br and BR so

that

Br ⊂ τi (Ωi ) ⊂ BR

up to projective transformations. Then τi giτ
−1
i must be bounded and convergent.
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