Chapter 3: Linear transformations

Linear transformations, Algebra of linear transformations, matrices, dual spaces, double duals

Linear transformations

- V, W vector spaces with same fields F.
 - Definition: T:V→W s.t. T(ca+b)=c(Ta)+Tb for all a,b in V. c in F. Then T is linear.
 - Property: T(O)=O. T(ca+db)=cT(a)+dT(b),a,b in V, c,d in F. (equivalent to the def.)
 - Example: A mxn matrix over F. Define T by Y=AX. T:Fⁿ→F^m is linear.
 - Proof: T(aX+bY)= A(aX+bY)=aAX+bAY = aT(X)+bT(Y).

- U:F^{1xm} ->F^{1xn} defined by U(a)=aA is linear.
- Notation: F^m=F^{mx1} (not like the book)
- Remark: $L(F^{mx1},F^{nx1})$ is same as $M_{mxn}(F)$.
 - For each mxn matrix A we define a unique linear transformation Tgiven by T(X)=AX.
 - For each a linear transformation T has A such that T(X)=AX. We will discuss this in section 3.3.
 - Actually the two spaces are isomorphic as vector spaces.
 - If m=n, then compositions correspond to matrix multiplications exactly.

- Example: T(x)=x+4. F=R. V=R. This is not linear.
- Example: V = {f polynomial:F→F}
 T:V → V defined by T(f)=Df.

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k$$

 $Df(x) = c_1 + 2c_2 x + \dots + kc_k x^{k-1}$

• V={f:R→R continuous}

$$Tf(x) = \int_0^x f(t)dt$$

• Theorem 1: V vector space over F. basis $\alpha_1, \dots, \alpha_n$. W another one with vectors β_1, \dots, β_m (any kind m \geq n). Then exists unique linear tranformation T:V \rightarrow W s.t. $T(\alpha_i) = \beta_i, j = 1, \dots, n$

 Proof: Check the following map is linear.

$$\alpha = x_1 \alpha_1 + \dots + x_n \alpha_n
T\alpha = x_1 \beta_1 + \dots + x_n \beta_n$$

- Null space of T:V→W:= { v in V| Tv = 0}.
- Rank T:= dim{Tv|v in V} in W. = dim range T.
- Null space is a vector subspace of V.
- Range T is a vector subspace of W.
- Example: $\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
- Null space z=t=0. X+2y=0 dim =1
- Range = W. dim = 3

- Theorem: rank T + nullity T = dim V.
- Proof: a₁,...,a_k basis of N. dim N = k.
 Extend to a basis of V: a₁,...,a_k,

$$a_{k+1},\ldots,a_n$$

- We show $T a_{k+1},...,T a_n$ is a basis of R. Thus n-k = dim R. n-k+k=n.
 - Spans R: $v=x_1\alpha_1+\cdots+x_n\alpha_n$ $Tv=x_{k+1}T(\alpha_{k+1})+\cdots x_nT(\alpha_n)$
 - Independence: $\sum_{i=k+1}^n c_i T \alpha_i = 0$ $T(\sum_{i=k+1}^n c_i \alpha_i) = 0$ $\sum_{i=k+1}^n c_i \alpha_i \in N$ $\sum_{i=k+1}^n c_i \alpha_i = \sum_{i=1}^k c_i \alpha_i$ $c_i = 0, i = k+1, \ldots, n$

Theorem 3: A mxn matrix.
 Row rank A = Column rank A.

Proof:

- column rank A = rank T where T:Rⁿ→R^m is defined by Y=AX. e_i goes to i-th column. So range is spaned by column vectors.
- rankT+nullityT=n by above theorem.
- column rank A+ dim S = n where $S=\{X|AX=O\}$ is the null space.
- $-\dim S = n row rank A (Ex 15 Ch. 5)$
- row rank = column rank.

- (Ex 15 Ch. 5) A^{mxn}. S solution space. R r-r-e matrix
- r = number of nonzero rows of R.
- RX=0 $k_1 < k_2 < ... < k_r$. J= {1,...,n}- { $k_1, k_2, ..., k_r$ }.

- Solution spaces parameter u₁,...,u_{n-r}.
- Or basis E_j given by setting $u_{j=0}$ and other 0 and $x_{ki} = c_{ij}$.

Algebra of linear transformations

- Linear transformations can be added, and multiplied by scalars. Hence they form a vector space themselves.
- Theorem 4: T,U:V→W linear.
 - Define T+U:V→W by (T+U)(a)=T(a)+U(a).
 - Define $cT:V \rightarrow W$ by cT(a)=c(T(a)).
 - Then they are linear transformations.

- Definition: L(V,W)={T:V→W| T is linear}.
- Theorem 5: L(V,W) is a finite dim vector space if so are V,W. dimL=dimVdimW.
- Proof: We find a basis: $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\} \subset V$ $\mathcal{B}' = \{\beta_1, \dots, \beta_m\} \subset W$
 - Define a linear transformation V→W:

$$E^{p,q}(lpha_i) = \left\{egin{array}{ll} 0, & i
eq q \ eta_p, & i = q \end{array}
ight. = \delta_{iq}eta_p, & 1 \leq p \leq m, 1 \leq q \leq n
ight.$$

– We show the basis: $E^{1,1}, \ldots, E^{1,n}$ $\vdots \quad \ddots \quad \vdots$ $E^{m,1}$

- Spans: T:V
$$\rightarrow$$
W. $T\alpha_j = \sum_{p=1}^m A_{pj}\beta_p$

We show

$$T = U = \sum_{p=1}^{m} \sum_{q=1}^{n} A_{pq} E^{p,q}$$

$$U(\alpha_{j}) = \sum_{p=1}^{m} \sum_{q=1}^{n} A_{pq} E^{p,q}(\alpha_{j})$$

$$= \sum_{p=1}^{m} (\sum_{q=1}^{n} A_{pq} \delta_{jp}) \beta_{p}$$

$$= \sum_{p=1}^{m} A_{pj} \beta_{p} = T\alpha_{j}, j = 1, \dots, m$$

$$T = U$$

Independence

• Suppose $\begin{array}{cccc} U &=& \sum_p \sum_q A_{pq} E^{p,q} = 0 \\ U\alpha_j &=& 0 \\ \sum_p A_{pj}\beta_p &=& 0 \\ \{\beta_p\} & \text{independent} \\ A_{pj} &=& 0 \text{ for all } p,j \end{array}$

- Example: V=F^m W=Fⁿ. Then
 - M_{mxn}(F) is isomorphic to L(F^m,Fⁿ) as vector spaces. Both dimensions equal mn.
 - E^{p,q} is the mxn matrix with 1 at (p,q) and 0 everywhere else.
 - Any matrix is a linear compinations of E^{p,q}.

- Theorem. T:V→W, U:W→Z.
 UT:V→Z defined by UT(a)= U(T(a)) is linear.
- Definition: Linear operator T:V→V.
- L(V,V) has a multiplication.
 - Define T⁰=I, Tⁿ=T...T. n times.
 - Example: A mxn matrix B pxm matrix
 T defined by T(X)=AX. U defined by U(Y)=BY.
 Then UT(X) = BAX. Thus
 UT is defined by BA if T is defined by A and U by B.
 - Matrix multiplication is defined to mimic composition.

- Lemma:
 - IU=UI=U
 - $-U(T_1+T_2)=UT_1+UT_2$, $(T_1+T_2)U=T_1U+T_2U$.
 - $-c(UT_1)=(cU)T_1=U(cT_1).$
- Remark: This make L(V,V) into linear algebra (i.e., vector space with multiplications) in fact same as the matrix algebra $M_{nxn}(F)$ if $V=F^n$ or more generally dim V=n. (Example 10. P.78)

- Example: V={f:F→F| f is a polynomial}.
 - D:V→V differentiation.

$$\begin{array}{rcl}
f(x) & = & c_0 + c_1 x + \dots + c_n x^n \\
Df(x) & = & c_1 + \dots + n c_n x^{n-1}
\end{array}$$

- $-T:V \rightarrow V: T \text{ sends } f(x) \text{ to } xf(x)$
- DT-TD = I. We need to show DT-TD(f)= f for each polynomial f.
- (QP-PQ=ihl In quantum mechanics.)

Invertible transformations

- T:V→W is invertible if there exists U:W→V such that UT=I_v TU=I_w. U is denoted by T⁻¹.
- Theorem 7: If T is linear, then T⁻¹ is linear.
- Definition: T:V → W is nonsingular if Tc=0 implies c=0
 - Equivalently the null space of T is {O}.
 - T is one to one.
- Theorem 8: T is nonsingular iff T carries each linearly independent set to a linearly independent set.

- Theorem 9: V, W dim V = dim W.
 T:V → W is linear. TFAE:
 - T is invertible.
 - T is nonsingular
 - T is onto.
- Proof: We use n=dim V = dim W.
 rank T+nullity T = n.
 - (ii) iff (iii): T is nonsingular iff nullity T =0 iff rank T
 =n iff T is onto.
 - (I)→(ii): TX=0, T-1TX=0, X=0.
 - (ii)→(i): T is nonsingular. T is onto. T is 1-1 onto.
 The inverse function exists and is linear. T⁻¹ exists.

Groups

- A group (G, .):
 - A set G and an operation GxG->G:
 - x(yz)=(xy)z
 - There exists e s.t. xe=ex=x
 - To each x, there exists x⁻¹ s.t. xx⁻¹=e and x⁻¹x=e.
- Example: The set of all 1-1 maps of {1,2,...,n} to itself.
- Example: The set of nonsingular maps GL(V,V) forms a group.

Isomorphisms

- V, W T:V->W one-to-one and onto (invertible). Then T is an isomorphism.
 V,W are isomorphic.
- Isomorphic relation is an equivalence relation: V~V, V~W <-> W~V, V~W, W~U -> V~W.

- Theorem 10: Every n-dim vector space over F is isomorphic to Fⁿ. (noncanonical)
- Proof: V n-dimensional
 - Let $B=\{a_1,\ldots,a_n\}$ be a basis.
 - Define T:V -> Fⁿ by

$$\alpha = x_1 \alpha_1 + \dots + x_n \alpha_n \mapsto (x_1, \dots, x_n) \in F^n$$

- One-to-one
- Onto

Example: isomorphisms

$$F^n = \{(x_1, \dots, x_n) | x_i \in F\}$$

$$\cong \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} | x_i \in F \right\}$$

$$P^n(F) = \{f: F \to F | f(x) = c_0 + c_1 x + \dots + c_n x^n\}$$

 $\cong F^{n+1}$

Basis $\{1, x, x^2, \dots, x^n\}$

$$c_0 + c_1 x + \cdots + c_n x^n \mapsto (c_0, c_1, \dots, c_n)$$

There will be advantages in looking this way!