3.6. Double dual Dual of a dual space Hyperspace - (V*)*=V** = ? (V is a v.s. over F.) - = V. - a in V. I: a -> L_a:V*->F defined by L_a(f)=f(a). - Example: $V=R^2$. $L_{(1,2)}(f)=f(1,2)=a+2b$, if f(x,y)=ax+by. - Lemma: If $a \ne 0$, then $L_a \ne 0$. - Proof: $B=\{a_1,\ldots,a_n\}$ basis of V s.t. $a=a_1$. - f in V* be s.t. $f(x_1a_1+...+x_na_n)=x_1$. - Then $L_{a1}(f) = f(a_1) = 1$. Thus $L_a \neq 0$. - Theorem 17. V. f.d.v.s. over F. The mapping a -> L_a is an isomorphism V->V** - Proof: I: a -> La is linear. $$L_{\gamma}(f) = f(\gamma)$$ $= f(c\alpha + \beta)$ $\gamma = c\alpha + \beta = cf(\alpha) + f(\beta)$ $= cL\alpha(f) + L_{\beta}(f)$ $L_{\gamma} = cL_{\alpha} + L_{\beta}$ - I is not singular. L_a =0 iff a =0. (-> above. <- obvious) - $\dim V = \dim V = \dim V^{**}$. - Thus I is an isomorphism by Theorem 9. - Corollary: V f.d.v.s. over F. If L:V->F, then there exists unique v in V s.t. L(f)=f(a)=L_a(f) for all f in V*. - Corollary: V f.d.v.s. over F. Each basis of V* is a dual of a basis of V. - Proof: $B^*=\{f_1,\ldots,f_n\}$ a basis of V^* . - By Theorem 15, there exists $L_1,...,L_n$ for V** s.t. $L_i(f_j)=\delta_{ij}$. - There exists $a_1, ..., a_n$ s.t. $L_i = L_{ai}$. - $-\{a_1,...,a_n\}$ is a basis of V and B* is dual to it. - Theorem: S any subset of V. f.d.v.s. (S⁰)⁰ is the subspace spanned by S in V=V**. - Proof: W =span(S). Show W⁰⁰=W. - $-\dim W+\dim W^0=\dim V$. - $-\dim W^0+\dim W^{00}=\dim V^*$. - dimW=dimW⁰⁰. - W is a subset of W⁰⁰. - v in W. L(v)=0 for all L in W⁰. Thus v in W⁰⁰. - If S is a subspace, then S=S⁰⁰. - Example: S={[1,0,0],[0,1,0]} in R³. - $-S^0=\{cf_3|c \text{ in } F\}.\ f_3:(x,y,z)->z$ - $-S^{00} = \{[x,y,0]|x,y \text{ in R}\}=Span(S).$ - A hyperspace is V is a maximal proper subspace of V. - Proper: N in V but not all of V. - Maximal. $N \subset V$ is maximal if $N \subset W$ implies W = N or W = V. - Theorem. f a nonzero linear functional. The null space N_f of f is a hyperspace in V and every hyperspace is a null-space of a linear functional. - Proof: First part. We show N_f is a maximal proper subspace. - v in V, f(v)≠0. v is not in N_f. N_f is proper. - We show that every vector is of form w+cv for w in N_f and c in F.(*) - Let u in V. Let c = f(u)/f(v). $(f(v) \neq 0)$. - Let w = u-cv. Then f(w)=f(u)-cf(v)=0. w in N_f . - N_f is maximal: N_f is a subspace of W. - If W contains v s.t. v is not in N_f, then W=V by (*). Otherwise W=N_f. - Second part. Let N be a hyperspace. - Fix v not in N. Then Span(N,v)= V. - Every vector u = w+cv for w in N and c in F. - w and c are uniquely determined: - u=w'+c'v. w' in N, c' in F. - (C'-C)V = W-W'. - If c'-c≠0, then v in N. Contradiction - c'=c. This also implies w=w'. - Define f:V->F by u = w+cv -> c. f is a linear function. (Omit proof.) - Lemma. f,g linear functionals on V. g=cf for c in F iff N_g contains N_f. - Theorem 20. $g, f_1, ..., f_r$ linear functionals on V with null spaces $N_g, N_{f_1}, ..., N_{f_r}$. Then g is a linear combination of $f_1, ..., f_r$ iff N contains $N_1 \cap ... \cap N_r$. - Proof: omit.