
Polynomial Ideals

Euclidean algorithm
Multiplicity of roots

               Ideals in F[x].



Euclidean algorithms

• Lemma.  f,d nonzero polynomials in
F[x]. deg d ≤ deg f. Then there exists a
polynomial g in F[x] s.t. either f-dg=0 or
deg(f-dg)<deg f.

• Proof of lemma:



Theorem 4. f, d in F[x]. d ≠0. There exists q,r in
F[x] s.t.
 (i) f=dq+r
 (ii) r=0 or deg r < deg d.
This is the Euclidean algorithm.



• Proof of Theorem 4.  If f=0 or deg f <
deg d, take q=0, and r=f.
– As sum deg f > deg d.
– ∃ g in F[x] s.t.

(i) deg(f-dg)< deg f or (ii) f-dg=0.
– Case (i) We find h such that

• deg(f-dg-dh)<deg f-dg or f-d(g+h)=0.
 …..

• f-d(g+h+h’+…+h(n)) = r with deg r < deg d
or =0.

• Thus f= dq+r, r=0 or deg r < deg d.



• Uniqueness: f=dq+r, f=dq’+r’.
– deg r < deg d.
– Suppose q-q’ ≠0 and d≠0.
– d(q’-q)=r’-r.
– deg d + deg(q’-q)=deg(r’-r)
– But deg r’, deg r < deg d. This is a

contradiction.
– q’=q, r’=r.



• f=dg, d divides f. f is a multiple of d.
q is a quotient of f.

• Corollary. f is divisible by (x-c) iff
f(c )=0.

• Proof: f=(x-c)q+r, deg r=0, r is in F.
f(c )= 0.q(c )+r. f(c )=0 iff r=0.

• Definition. c in F is a root of f iff f(c )=0.
• Corollary. A polynomial of degree n over a

field F has at most n roots in F.
– Proof: f=(x-a)g if a is a root. Deg g < deg f. By

induction g has at most n-1 roots. F has at most n
roots.



Multiplicity of roots

• Derivative of f=c0+c1x+…+cnxn.
– f’=Df=c1+2c2x+…+ncnxn-1.
– f’’=D2f=DDf

• Taylors formula: F a field of char 0.
f a polynomial.



• Proof:



• Multiplicity of roots: c is a zero of f. The
multiplicity of c is largest positive integer
r such that (x-c)r divides f.

• Theorem 6: F a field of char 0. deg f ≤n.
– c is a root of f of multiplicity r iff
– Dkf(c )=0, 0 ≤k≤r-1, and Dr f(c ) ≠0.

• Proof: (->) c mult r. f=(x-c)rg, g(c ) ≠0.



• By uniqueness of polynomial expansions:

• (<-) Dkf(c )=0, 0≤k≤r-1.
– By Taylors formula, f = (x-c)r g, g(c ) ≠0.
– r is the largest integer such that (x-c)r divides f.



• Ideals: This is an important concept
introduced by Dedekind in 1876 as
generalizations of numbers….

• One can add and multiply ideals but
ideals are subsets of F[x].

• Ideals play important roles in number
theory  and algebra. In fact, useful in
the Fermat conjecture and in algebraic
geometry.

• Search “ideal in ring theory”.
en.wikipedia.org/wiki/Main_Page



• Definition: An ideal in F[x] is a subspace M of
F[x] such that fg is in M whenever f is in F[x]
and g is in M.

• General ring theory case is not needed in this book.
• Example: Principal ideals

– d a polynomial
– M = dF[x] ={df|f in F[x]} is an ideal.

• c(df)+dg = d(cf+g).
• fdg= d(fg)

– If d in F not 0, then dF[x]=F[x].
– F[x] is an ideal
– M is a principal ideal generated by d.

• (d can be chosen to be monic always)



• Example: d1,d2,…,dn polynomials in
F[x]. <d1F[x], d2F[x],…,dnF[x]> is an
ideal.

• Proof:
– g1=d1f1+…+dnfn,g2=d1h1+…+dnhn in M

• cg1+g2 = d1(cf1+h1)+…+dn(cfn+ hn) is in M.
– g=d1f1+…+dnfn is in M and f in F[x].

• fg = d1ff1+…+dnffn is in M



• Ideals can be added and multiplied like
numbers:
– I+J={f+g|f ∈I, g∈J }
– IJ ={a1b1+…+anbn| ai ∈ I, bi ∈ J}

• Example:
– <d1F[x], d2F[x],…,dnF[x]> =

d1F[x]+d2F[x]+…+dnF[x].
– d1F[x]d2F[x] = d1d2F[x].



• Theorem: F a field. M any none zero
ideal. Then there exists a unique monic
polynomial d in F[x] s.t. M=dF[x].

• Proof: M=0 case: done
– Let M≠0. M contains some non-zero poly.
– Let d be the minimal degree one.
– Assume d is monic.
– If f is in M, f = dq+r. r=0 or deg r < deg d.
– Since r must be in M and d has minimal

degee, r=0.
– f=dq. M=dF[x].



• Uniqueness: M=dF[x]=gF[x]. d,g monic
– There exists p, q s.t. d = gp, g=dq.
– d=dpq. deg d = deg d + deg p + deg q.
– deg p= deg q=0.
– d, q monic. p,q=1.

• Corollary: p1,…,pn polynomials not all 0. Then
There exists unique monic polynomial d in
F[x] s.t.
– (i) d is in < p1F[x],…, pnF[x] >.
– (ii) d divides each of the pis.
– (iii) d is divisible by every polynomial dividing all

pis. (i.e., d is maximal such poly with (i),(ii).)



• Proof: (existence) Let d be obtained by
M=p1F[x]+…+pnF[x] = dF[x].
– (ii) Thus, every f in M is divisible by d.
– (i) d is in M.
– (iii) Suppose pi|f, i=1,…,n.
– Then pi=fgi I=1,…,n
– d= p1q1+…+pnqn since d is in M.
– d= fg1q1+…+fgnqn =f(g1q1+…+gnqn )
– d|f



• (Uniqueness)
– Let d’ satisfy (i),(ii).
– By (i) for d and (ii) for d’, d’ divides d.
– By (i) for d’ and (ii) for d, d divides d’.
– Thus, cd’=d, c in F. d’ satisfies (iii) also.

• Conversely, (i)(ii)(iii) -> d is the monic
generator of M.



• Definition: p1F[x]+…+pnF[x] = dF[x].
We define d=gcd(p1,…,pn)

• p1,…,pn is relatively prime if gcd=1.
• If gcd=1, there exists f1,…,fn s.t.

1=f1p1+…+fnpn.



• Example:



4.5. Prime Factorization of a
polynomial

• f in F[x] is reducible over F if there
exists g,h s.t. f=gh. Otherwise f is
irreducible.

• Example 1: x2+1 is irreducible in R[x].
– Proof: (ax+b)(cx+d)= x2+1, a,b,c,d in R
– =acx2 + (bc+ad)x + bd.
– ac=1, bd=1, bc+ad=0. c=1/a, d=1/b.

b/a+a/b=0. (b2+a2)/ab=0 -> a=0, b=0.



– X2+1=(x+i)(x-i) is reducible in C[x].
• A prime polynomial is a non-scalar,

irreducible polynomial in F[x].
• Theorem 8. p.f,g in F[x]. Suppose that p

is prime and p divides fg. Then p
divides f or p divides g.

• Proof: Assume p is monic. (w.l.o.g.)
– Only divisor of p are 1 and p.
– Let d = gcd(f,p). Either d=1 or d=p.
– If d=p, we are done.



– Suppose d=1. f,p rel. prime.
– Since (f, p)=1, there exists f0,p0 s.t.

1=f0f+ p0p.
– g=f0fg+ p0pg = (fg)f0 + p(p0g).
– Since p divides fg and p divides p(p0g),

p divides g.
• Corollary. p prime. p divides f1f2…fn.

Then p divides at least one fi.
– Proof: By induction.



• Theorem 9. F a field. Every nonscalar
monic polynomial in F[x] can be
factored into a product of monic primes
in F[x] in one and, except for order, only
one way.

• Proof: (Existence)In case deg f =1.
f=ax+b=x+b form. Already prime.
– Suppose true for degree < n.
– Let deg f=n>1. If f is irreducible, then f is

prime and done.



– Otherwise, f=gh. g,h nonscalar, monic.
– deg g, deg h < n. g,h factored into monic primes

by the induction hypothesis.
– F= p1p2…pn. pi monic prime.

• (Uniqueness) f= p1p2…pm=q1q2…qn.
– pm must divide qi for some i by above Cor.
– qi pm are monic prime -> qi=pm

– If m=1 or n=1, then done.
– Assume m,n > 1.
– By rearranging,  pm=qn.
– Thus, p1…pm-1=q1…qn-1. deg < n.
– By induction {p1,…,pm-1}={q1,…,qn-1}



•
primary decomposition of f.

• Theorem 10.
•

Then f1,…,fk are relatively prime.
• Proof: Let g = gcd(f1,…,fk ).

– g divides fi for each i.
– g is a product of pis.
– g does not have as a factor pi for each i

since g divides fi.
– g=1.



• Theorem 11: Let f be a polynomial over
F with derivative f’. Then f is a product
of distinct irreducible polynomial over F
iff f and f’ are relatively prime.

• Proof: (<-) We show If f is not prod of
dist polynomials, then f and f’ has a
common divisor not equal to a scalar.
–  Suppose f=p2h for a prime p.
– f’= p2h’+ 2pp’h.
– p is a divisor of f and f’.
– f and f’ are not relatively prime.



• (->) f=p1…pk where p1,…,pk are distinct
primes.
– f’= p1’f1+p2’f2+….+pk’fk.
– Let p be a prime dividing both f and f’.
– Then p=pi for some i (since f|p).
– pi divides fj for all j ≠i by def of fi.
– pi divides f’=p1’f1+p2’f2+…+pk’fk.
– pi divides pi’fi by above two facts.
– pi can’t divide pi’ since deg pi’< deg pi.
– pi can’t divide fi by definition. A contradiction.
– Thus f and f’ are relatively prime.



• A field F is algebraically closed if every
prime polynomial over F has degree 1.

• F=R is not algebraically closed.
• C is algebraically closed. (Topological

proof due to Gauss.)
• f a real polynomial.

– If c is a root, then    is a root.
– f a real polynomial, then roots are



• f is a product of (x-ti) and pjs.

• f is a product of 1st order or 2nd order
irreducible polynomials.


