Polynomial Ideals

Euclidean algorithm
Multiplicity of roots
ldeals in F[X].



Euclidean algorithms

 Lemma. f,d nonzero polynomials in
F[x]. deg d < deg f. Then there exists a

polynomial g in F[x] s.t. either f-dg=0 or
deg(f-dg)<deg f.
* Proof of lemma:
f = aQ,T™ + Z?;Bl a;z’, Gy # 0
d = b,z"+ Z?:_ol b;z*, b, A0, m >n



cm_1Z™ L4+ ...+ ¢

deg f
0

f = (am/bn)z™ "d
deg(f — (@m/bn)z™ ™d)
orf — (am/bn)x™ "d

g = (am/bn)z™ "

Al

Theorem 4. 1, d in F[x]. d #0. There exists q,r in
F[x] s.t.

(1) f=dqg+r

(i) r=0 or deg r < deg d.



* Proof of Theorem 4. Iff=0 ordegf <

deg d, take =0, and r=f.

— Assum deg f > deg d.

—dgin F[x] s.t.

(1) deg(f-dg)< deg f or (ii) f-dg=0.
— Case (i) We find h such that
» deg(f-dg-dh)<deg f-dg or f-d(g+h)=0.
 f-d(g+h+h’+...+h() = r with deg r < deg d
or =0.

* Thus f=dqg+r, r=0 or deg r < deg d.



* Uniqueness: f=dg+r, f=dq’+r’.
—deg r < degd.
— Suppose g-q’ =0 and d=0.
—d(q™-q)=r-r.
—deg d + deg(q’-q)=deg(r'-r)
—Butdegr,degr<degd. Thisis a
contradiction.

— q’:q, r'=r.



f=dg, d divides f. f is a multiple of d.
g is a quotient of f.

Corollary. f is divisible by (x-c) iff

f(c )=0.

Proof: f=(x-c)g+r, deg r=0, ris in F.

f(c )= 0.g(c )+r. f(c )=0 iff r=0.

Definition. c in F is a root of f iff f(c )=0.
Corollary. A polynomial of degree n over a
field F has at most n roots in F.

— Proof: f=(x-a)g if a is a root. Deg g < deg f. By
iInduction g has at most n-1 roots. F has at most n
roots.



Multiplicity of roots

 Derivative of f=c,+c,x+...+c X".
— f=Df=c,+2c,x+...+nc x"1.
— f’=D2f=DDf

» Taylors formula: F a field of char O.
f a polynomial.
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* Multiplicity of roots: c is a zero of f. The
multiplicity of c is largest positive integer
r such that (x-c)" divides f.

* Theorem 6: F a field of char 0. deg f =n.
— c is a root of f of multiplicity r iff
— DXf(c )=0, 0 <k=r-1, and Dr f(c ) =O.

* Proof: (->) c mult r. f=(x-c)'g, g(c ) =0.

f@) = (@-o (Tnl @@ - o)
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* By uniqueness of polynomial expansions:

D) — 00<k<r—1
= %%,rgkgn
gl = g(c) #0

« (<-) DXf(c )=0, O<k=r-1.
— By Taylors formula, f = (x-c)" g, g(c ) =O0.
— ris the largest integer such that (x-c)"divides f.



ldeals: This is an important concept
introduced by Dedekind in 1876 as
generalizations of numbers....

One can add and multiply ideals but
ideals are subsets of F[x].

ldeals play important roles in number
theory and algebra. In fact, useful in
the Fermat conjecture and in algebraic
geometry.

Search “ideal in ring theory”.
en.wikipedia.org/wiki/Main_Page



» Definition: An ideal in F[x] is a subspace M of
F[x] such that fg is in M whenever f is in F[X]
and gisin M.

General ring theory case is not needed in this book.

« Example: Principal ideals

— d a polynomial

— M = dF[x] ={df|f in F[x]} is an ideal.
» c¢(df)+dg = d(cf+g).
» fdg= d(fg)

— If d in F not 0, then dF[x]=F[Xx].

— F[x] is an ideal

— M is a principal ideal generated by d.
* (d can be chosen to be monic always)



- Example: d,,d,,...,d, polynomials in
F[x]. <d,F[x], d,F[x],...,d,F[x]> is an
ideal.

* Proof:
—g,=d f,+...+d f ,g,=d,h,+...+d h in M
* cg4*+g, = d,(cf;+h )+...+d (cf + h ) is in M.
—g=d,f+...+d f_is in M and f in F[Xx].
« fg = d ff;+...+d ff isin M



 |deals can be added and multiplied like
numbers:
— I+J={f+g|f €l, g&d }
—1J ={a,b+...+a b |aEl beEJ}
« Example:
— <d,F[x], d,F[x],...,d,F[x]> =
d,F[x]+d,F[x]+...+d _F[x].
— dF[x]d,F[x] = dd,F[Xx].



* Theorem: F a field. M any none zero
ideal. Then there exists a unique monic
polynomial d in F[x] s.t. M=dF[x].

* Proof: M=0 case: done
— Let M=0. M contains some non-zero poly.
— Let d be the minimal degree one.

— Assume d is monic.
—Iffisin M, f =dqg+r. r=0 or deg r < deg d.

— Since r must be in M and d has minimal
degee, r=0.

_ f=dq. M=dF[x].




* Uniqueness: M=dF[x]=gF[x]. d,g monic
— There exists p, g s.t. d = gp, g=dq.

— d=dpq. deg d =deg d + deg p + deg q.
— deg p= deg g=0.
— d, g monic. p,g=1.

« Corollary: p4,...,p, polynomials not all 0. Then
There exists unique monic polynomial d in
F[x] s.t.

— (i) disin < p,F[x],..., p,F[x] >.

— (ii) d divides each of the p;s.

— (iii) d is divisible by every polynomial dividing all
p:s. (i.e., d is maximal such poly with (i),(ii).)



* Proof: (existence) Let d be obtained by
M=p,F[x]+...+p, F[x] = dF[Xx].
— (i) Thus, every fin M is divisible by d.
— (i) d isin M.
— (iil) Suppose pilf, iI=1,...,n.
— Then p=fg; I=1,...,n
—d=p4q4*...+p,q, Since d is in M.

— d=fg,q4+...+fg,q, =f(g4q4+...+9,q,, )
—d|f



* (Uniqueness)
— Let d’ satisfty (i),(ii).
— By (i) for d and (ii) for d’, d’ divides d.
— By (i) for d" and (ii) for d, d divides d'.
— Thus, cd’=d, c in F. d’ satisfies (iii) also.
» Conversely, (i)(ii)(iii) -> d is the monic
generator of M.



» Definition: p4F[x]+...+p,F[X] = dF[X].
We define d=gcd(p4,...,p,,)
* P4,...,P, IS relatively prime if gcd=1.

» |f gcd=1, there exists f,,...,f s.t.
1=fps+... 4P,



« Example:  ged(z + 2,2 + 8z + 16)
2’ +8z+16= (z+2)(x+6)+4
4eM,1€M,M = Flz]

ged(z + 1,z2% + 8z + 16) = 1

1= (=1/4)(z + 6)(z +2) + (1/4)(z* + 8z + 16)



4.5. Prime Factorization of a
polynomial

* fin F[x] is reducible over F if there

exists g,h s.t. f=gh. Otherwise f is
iIrreducible.

- Example 1: x?+1 is irreducible in R[X].
— Proof: (ax+b)(cx+d)= x2+1, a,b,c,d in R
— =acx? + (bc+ad)x + bd.

—ac=1, bd=1, bct+ad=0. c=1/a, d=1/b.
b/a+a/b=0. (b%+a?)/ab=0 -> a=0, b=0.



— X2+1=(x+i)(x-i) is reducible in C[x].

* A prime polynomial is a non-scalar,
irreducible polynomial in F[x].

* Theorem 8. p.f,g in F[x]. Suppose that p
Is prime and p divides fg. Then p
divides f or p divides g.

* Proof: Assume p is monic. (w.l.o.g.)

— Only divisor of p are 1 and p.
— Let d = gcd(f,p). Either d=1 or d=p.
— If d=p, we are done.



— Suppose d=1. f,p rel. prime.

— Since (f, p)=1, there exists f,,p, S.t.
1=f,f+ pyp.

— g=fofg+ popg = (fg)f + P(Po9)-

— Since p divides fg and p divides p(p,9),
p divides g.

» Corollary. p prime. p divides f.f,...f,.
Then p divides at least one f.
— Proof: By induction.



* Theorem 9. F a field. Every nonscalar
monic polynomial in F[x] can be
factored into a product of monic primes

in F[X] in one and, except for order, only
one way.

* Proof: (Existence)ln case deg f =1.
f=ax+b=x+b form. Already prime.

— Suppose true for degree < n.

— Let deg f=n>1. If f is irreducible, then f is
prime and done.



— Otherwise, f=gh. g,h nonscalar, monic.

— deg g, deg h < n. g,h factored into monic primes
by the induction hypothesis.

— F=p,p5...p,- P; monic prime.
* (Uniqueness) f= p4p,...Pp=0195---d,-
— p,, must divide q; for some i by above Cor.
— Q; p,, @re monic prime -> q,=p,
— If m=1 or n=1, then done.
— Assume m,n > 1.
— By rearranging, p,,=q,.
— Thus, p4...Pm.1=0q4---d,.1- d€g < n.
— By induction {p4,....Pm.1}={q4,---,Qn.1}



f pnl .
primary decomposmon off

heorem 10. ¢ = p?l. Py

fj — f/p _Hz;é]

Then f,,....f, are relatively prime

Proof: Let g = gcd(f,,....f, ).

— g divides f; for each |.

— g is a product of p:s.

— g does not have as a factor p, for each |
since g divides f..

_9:1_




 Theorem 11: Let f be a polynomial over
F with derivative f'. Then fis a product
of distinct irreducible polynomial over F
iff f and " are relatively prime.

* Proof: (<-) We show If f is not prod of
dist polynomials, then f and f' has a
common divisor not equal to a scalar.

— Suppose f=p2h for a prime p.
— = p?h’+ 2pp’h.

—p is a divisor of f and f'.

—fand f' are not relatively prime.



* (->) f=p4...p Where p,,...,p, are distinct
primes.
— = pyfHp .. +p iy,
— Let p be a prime dividing both f and f'.
— Then p=p, for some i (since f|p).
— p; divides f;for all j =i by def of f..
— p;divides f'=p,f,+p,f,+...+p, 1.
— p; divides p;'f. by above two facts.
— p; can't divide pi’ since deg p;'< deg p;.
— p; can’t divide f; by definition. A contradiction.
— Thus f and f" are relatively prime.



A field F is algebraically closed if every
prime polynomial over F has degree 1.

f=cl@—c)™ (- )™
F=R is not algebraically closed.

C is algebraically closed. (Topological
proof due to Gauss.)

f a real polynomial.
— If cis a root, then ¢ is a root.
— f a real polynomial, then roots are

{tla ...,tk,cl,él, ...,CT,ET},tz‘ c R, Cj cC—R



» fis a product of (x-t;) and p;s.

pii=(x—¢c;)(x— &) =x°— (c; + &) + c;C

* fis a product of 1st order or 2nd order
iIrreducible polynomials.



